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Abstract

Basecalling, an essential step in many genome analysis studies,
relies on large Deep Neural Networks (DNNs) to achieve high ac-
curacy. Unfortunately, these DNNs are computationally slow and
inefficient, leading to considerable delays and resource constraints
in the sequence analysis process. A Computation-In-Memory (CIM)
architecture using memristors can significantly accelerate the per-
formance of DNNs. However, inherent device non-idealities and
architectural limitations of such designs can greatly degrade the
basecalling accuracy, which is critical for accurate genome analy-
sis. To facilitate the adoption of memristor-based CIM designs for
basecalling, it is important to (1) conduct a comprehensive analysis
of potential CIM architectures and (2) develop effective strategies
for mitigating the possible adverse effects of inherent device non-
idealities and architectural limitations.

This paper proposes Swordfish, a novel hardware/software co-
design framework that can effectively address the two aforemen-
tioned issues. Swordfish incorporates seven circuit and device re-
strictions or non-idealities from characterized real memristor-based
chips. Swordfish leverages various hardware/software co-design
solutions to mitigate the basecalling accuracy loss due to such non-
idealities. To demonstrate the effectiveness of Swordfish, we take
Bonito, the state-of-the-art (i.e., accurate and fast), open-source
basecaller as a case study. Our experimental results using Sword-
fish show that a CIM architecture can realistically accelerate Bonito
for a wide range of real datasets by an average of 25.7x, with an
accuracy loss of 6.01%.

1 Introduction

Basecalling is the first computational step required to translate
noisy electrical signals generated by modern sequencing machines
to strings of DNA nucleotide bases (i.e., {A, C, G, T}), also known as
DNA reads or simply reads [6, 12, 53, 60, 98, 107, 127, 131, 133]. The
accuracy of basecalling directly affects the overall accuracy and
the computational effort (in terms of required algorithms and their
complexity and runtimes) of subsequent genome analysis steps. The
speed of basecalling also determines how fast one can run through
all computational steps of a genomic study [107, 120, 134]. There-
fore, accurate and fast basecalling is critical for advancing genomic
studies that hold the key to unlocking the potential of precision
medicine, facilitating virus surveillance, and driving advancements
in healthcare and science [5-7, 1315, 28, 29, 34, 41, 42, 62, 67, 84,
87, 103, 137, 142].

Current state-of-the-art (SotA) basecallers leverage Deep Neu-
ral Networks (DNNs) to achieve high accuracy [31, 96, 105, 120,
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140, 149]. However, SotA DNN-based basecallers encounter differ-
ent shortcomings when implemented using different approaches.
Specifically, DNN-based basecaller designs on Central Processing
Units (CPUs) and Graphics Processing Units (GPUs) face multi-
ple major shortcomings: (1) they are computationally intensive
and slow [107, 120, 134], (2) they require extensive data movement
between the processor and memory [16, 17, 79], and (3) they are
limited by the use of costly hardware, such as expensive SRAM
memories that require 6 transistors for storing only 1 bit of informa-
tion [30, 102]. When implemented on a hardware accelerator, these
DNN-based basecallers face two other limitations: (1) They rely on
costly floating-point (FP) computations, which place high demands
on the required system’s memory bandwidth and compute units
with FP capability. This makes hardware acceleration difficult due
to the large number and size of neural network model parameters.
(2) They use costly Machine Learning (ML) techniques such as skip
connections! [96, 123, 140], leading to added computation, mem-
ory, and storage overheads (e.g., to store the activation parameters
that are fed to the last layers of the NN) [120]. Therefore, over the
past decade, both industry and academia [27, 68, 101, 111, 115, 119]
have explored the use of Computation-In-Memory (CIM)? using
memristor-based devices to accelerate DNNs.

This growing interest in using CIM for resolving the shortcom-
ings of DNNs is driven by two main factors: (1) the potential of
the CIM paradigm to process data where it resides to reduce the
large performance and energy overheads of data movement and
(2) the analog operational properties of these nanoscale emerging
technologies (e.g., memristors) that intrinsically support efficient
Vector-Matrix-Multiplication (VMM), multiple of which are used to
implement a Matrix-Matrix-Multiplication (MMM) that is the most
dominant operation in DNNs. However, the memristor-based CIM
solutions for basecalling can greatly degrade the DNN inference
accuracy due to (1) the limited quantization levels supported by
memristor devices [27, 111] and (2) non-idealities of memristive
devices and circuits used to adopt memristor-based memory arrays,
such as sneak paths [48, 118] and the non-linearity of peripheral
circuitry [58, 83, 147]. To propose viable solutions for accelerating
the large-scale DNN-based basecallers, these aspects must be con-
sidered at all computing stack layers, i.e., application, architecture,
and device. Such considerations are only possible with a framework
capable of evaluating the impact of the non-idealities in memristor-
based CIM architecture on the end-to-end basecalling accuracy.

!Skip connection is an ML technique that allows skipping a few neural network layers
and forwarding the output to the input of a layer further ahead.
%Interchangeably, also referred to as Processing-In-Memory (PIM) [85].



This framework should also be able to account for the overhead
that the solutions to overcome the accuracy loss may bring.

To this end, we propose Swordfish, a modular and extensible
hardware/software co-design framework that allows us to (1) eval-
uate the impact of memristor non-idealities and CIM limitations
on the accuracy and performance of basecalling and (2) investigate
potential mitigation techniques and measure their effect on accu-
racy for each non-ideality (Contribution #1). Swordfish is used
to investigate the acceleration of basecalling via emerging com-
puting paradigms and technologies. Specifically, with Swordfish,
we comprehensively investigate the potential of accurate accel-
eration of a SotA basecaller (Bonito) on a SotA CIM architecture
(PUMA [9]) by accounting for the non-idealities of the underlying
devices and technologies of the underlying architecture, for the first
time (Contribution #2). Swordfish integrates real-world applica-
tions with multiple critical comparison metrics, distinct mitigation
strategies to tackle the challenges of novel hardware, and compre-
hensive real measurements to guide the modeling of memristors.
Our evaluations using Swordfish show that on a wide range of real
genome datasets, PUMA accelerates Bonito, a SotA basecaller, by an
average of 25.7x realistically (i.e., the average throughput improve-
ment is 25.7X when we consider essential mitigation techniques to
prevent huge accuracy loss). This performance still comes at the
cost of a 6.01% accuracy loss (Section 5). Our evaluations also yield
several key suggestions and recommendations for DNN, hardware,
and system designers of future emerging accelerators with mem-
ristors for DNN-based basecallers and other applications that have
two most important metrics (e.g., accuracy and performance) to
consider in their evaluation (Contribution #3). Specifically, our
investigation using Swordfish results in multiple unique insights:
(1) Our results challenge the prevalent assumption that DNN-based
applications will automatically succeed on memristor-based CIM
due to inherent redundancy in large neural networks, (2) combining
mitigation techniques at only one abstraction level (e.g., circuit or
system level) does not necessarily improve the accuracy loss as they
can potentially go against each other, and (3) combining multiple
mitigation techniques at the circuit and system levels can offset the
accuracy loss induced by non-idealities significantly.

2 Background and Motivation

This section briefly discusses the necessary background and
motivation for this work. We refer the reader to comprehensive
reviews [6, 18, 45, 85, 98] for more details.

2.1 Genome Sequencing Pipeline

The genome sequencing pipeline consists of computational steps
we employ to acquire genome sequences as strings of DNA char-
acters (ie., {A, C, G, T}) [6, 12, 53, 60, 98, 107, 127, 131, 133] for
subsequent analysis in bioinformatics, e.g., cell type identification,
identification of marker genes, and variant detection.

Although, currently, the most available data and tools in the
genomics realm are for short reads [20, 39] (mainly produced by
Mlumina sequencers), working with highly accurate long genome
sequences is generally favorable as they reduce the computational
cost of reconstructing the genome. For this reason, there is a large
momentum towards accurate long-read sequencing [6]. Our work
focuses on finding solutions and analysis tools that target long reads
while also not discarding tools (e.g., GenAx [39] and GenASM [20]),

designed for short reads. A leading method for long-read sequenc-
ing is the nanopore sequencing technology. Nanopore sequencers
[90, 93, 94] translate raw signal squiggles into bases (A, C, G, T)
using complex neural networks. Today, Oxford Nanopore Technolo-
gies (ONT) is a company that produces the most commonly used
sequencers based on Nanopore technology.

Fig. 1 illustrates the nanopore genome sequencing pipeline [107]
and the placement and execution time breakdown of each of its
steps. We use SotA tools for each step and run the tool on the
datasets described in Section 4.
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Figure 1: Overview of the nanopore genome sequencing

pipeline and execution time breakdown of different steps.

We make two main observations. First, basecalling is the first
computational step in the pipeline. Second, basecalling dominates
the execution time of a single run in the pipeline. These steps
make up more than 40% of the entire execution time. Our empirical
observation aligns with those in prior works [33, 81, 107].

2.2 Basecalling

Basecalling is responsible for converting raw electrical signals
produced by a nanopore sequencer to digital genome symbols, i.e.,
[A, C, G, T] [12, 53, 60, 127]. Recent works [92, 95, 96, 134] heavily
investigate the use of DNNs for basecalling as they can provide high
accuracy than Hidden Markov Model (HMM) based techniques [91].

There are generally two approaches for improving the accu-
racy and/or performance of a basecaller: 1) software-based and
2) hardware-based. Software-based methods propose new algo-
rithms (e.g., DNNs [95, 96, 140] instead of HMMs [91]) or faster
and/or smaller DNN architectures [120, 140]. Hardware-based ap-
proaches propose various hardware platforms for the target algo-
rithm (i.e., DNN or HMM) to improve performance with (hopefully)
small impact on accuracy [81, 120].

We observe four main shortcomings in SotA basecallers, which
limit their execution time and/or hardware acceleration:

o SotA basecallers are slow and energy inefficient. For example,
Guppy basecalls 3 Giga basepairs (Gbps) in ~6 hours while a
following step in the genomics pipeline, such as read mapping
using minimap2 [71] takes only ~0.11 hours [120].

o SotA basecallers use DNN models with costly skip connections
[123]. For example, Bonito needs an additional ~21% of model
parameters (along with associated memory and storage over-
heads) for skip connections and requires additional computation
on them. Note that a skip connection permits bypassing certain
layers within the neural network, transmitting the output of
one layer as the input to subsequent layers [123]. These con-
nections are costly because they (1) typically force the network
to perform additional computation, for example, to match the
channel sizes, (2) incur extra memory and storage overhead, as
they require storing the activation parameters that are fed to the
later layers [16, 17], and (3) incur additional off-chip data move-
ment overhead when these networks are run on conventional
processor-centric hardware platforms, like CPUs and GPUs.



e SotA basecallers exploit 32-bit floating point precision for their
model parameters [96, 134, 140]. This effectively increases (1) the
required bandwidth and processing units, e.g., with FP compute
capability, and (2) inefficiency in the hardware realization of the
underlying models.

e SotA basecallers incur expensive data movement between the
computation units and the memory units [79, 81, 120].

We emphasize that 40% of execution time spent on basecall-
ing (Section 2.1), the first and arguably most critical step in the
pipeline, is significant and worth accelerating. Today’s best base-
callers often underperform on SotA systems, generating bottlenecks.
A potentially 40% decrease in genome analysis runtime implies a
proportional reduction in power and energy, which is critical con-
sidering the extensive data and computational demands of modern
genome analysis systems. Therefore, optimizing basecalling con-
tributes greatly to improving the efficiency and sustainability of
the genomics pipeline.

2.3 Memristor-based CIM and Associated
Non-Idealities

Resistive memories or memristive devices, such as ReRAM, PCM,
and STT-MRAM [59, 69, 119, 132], have recently been introduced as
suitable candidates for both storage and computation units that can
efficiently perform vector-matrix multiplication [138] and logical
bulk bit-wise operations [26, 73, 113, 114, 139], as they can follow
Kirchhoff’s law inherently [121]. Therefore, many recent works [9,
26, 27, 111, 112, 139, 143-145] exploit these devices in their CIM
architectures. Memristor devices also enjoy non-volatility, high-
density, and near-zero standby power [73, 119, 139].

A typical memristor-based memory crossbar capable of VMM
and other logical operations is shown in Fig. 2 [9, 26, 27, 111, 139]
alongside its possible non-idealities.
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Figure 2: Overview of memristor-based crossbar arrays and
possible non-idealities.

This memristor-based structure can suffer from at least four
types of non-idealities or variations that can eventually affect the
results of the enabled VMM operation, i.e., lead to errors in the VMM
result: (1) The non-ideal digital to analog converter (DAC), due to
the effective resistive load (known as Ry ,,4) in its circuit [55], (2)
Variation of synaptic conductance, which includes both imperfect
programming operation (commonly known as write variations) and
the process variation that exist in memristors [4, 23, 70, 148], (3) The
wire resistance and sneak paths, due to imperfect wires (i.e., wires
with different resistances) and the changes in the voltages of the
internal nodes while performing a VMM operation [56, 148], and

(4) non-ideal sensing circuit or analog to digital converters (ADCs),
due to rigid or hard-to-accurately-change references used for distin-
guishing/sensing the end result [55, 144]. Our work focuses on these
specific non-idealities inherent to memristor technologies in a CIM
architecture. While we do not explicitly address other circuit chal-
lenges and non-idealities, we acknowledge their presence and the
existing solutions developed to mitigate them in electronic systems.
For example, crosstalk [104, 129, 130], which involves interference
between adjacent circuit traces or wires, can indeed lead to data
corruption and compromise information integrity. However, we
focus on the specific non-idealities relevant to our hardware archi-
tecture, not crosstalk. Note that industry-standard techniques, such
as shielding and layout design, decoupling components, ground and
power distribution, signal timing and margins, ECC and scrubbing,
isolation and shielding, and crosstalk-aware clock distribution, have
been extensively studied and developed to mitigate crosstalk issues.
We assume that similar techniques can be applied to address any
potential crosstalk concerns in memristor-based CIM systems.
Recent works [9, 19, 27, 86, 111] report impressive performance
and energy improvements for DNN models executed on memristor-
based CIM architectures, mainly assuming idealized underlying
hardware. Moreover, DNNs are known to be resilient to some
noise [44, 46, 66, 125, 126, 128]. However, since memristor-based
CIM architectures are indeed non-ideal and the resiliency of DNNs
has a limit, to decide whether or not these platforms are indeed
suitable for realizing our DNN-based basecaller, one needs to evalu-
ate the impact of these non-idealities on the end-to-end application
accuracy and account for the overhead that the solutions to over-
come the accuracy loss may bring. Such a framework is missing
among prior works and is a contribution of our work (Section 3).

2.4 Programmable Inference Architecture

PUMA (Programmable Ultra-efficient Memristor-based Acceler-
ator) [9-11] is a complete set of (micro)architecture, simulator, and
compiler that supports the execution of many ML applications, us-
ing memristor crossbars enhanced with general-purpose execution
units. PUMA uses a spatial architecture and provides the necessary
programmability and generality to execute a wide range of ML-
based applications on memristor-based crossbars. For evaluations
in Swordfish, we assume an PUMA-based architecture for two rea-
sons. First, PUMA supports all the necessary types of NN layers in
basecallers: CNN, LSTM, and linear. This is especially handy for our
main target basecaller, Bonito. Second, the architecture, simulator,
and compiler are open-sourced [10, 11] and well-documented for
an extension, unlike many other rich architectures.

3 Swordfish Framework

Swordfish is a framework designed to guide the evaluation of
CIM designs for DNN-based basecallers.

3.1 Swordfish Overview

Fig. 3 presents an overview of the Swordfish framework. Sword-
fish consists of 4 key modules:
o @ Partition & Map module that partitions and maps the Vec-
tor-Matrix-Multiplication (VMM) operations of the target DNN-
based basecaller to the underlying CIM platform,



o @ VMM Model Generator module that generates an end-to-end
model for possible non-idealities and errors of a VMM operation
considering the underlying technology in the CIM design,

o © Accuracy Enhancer module that implements online and offline
mitigation techniques to counter accuracy loss, and

o @ System Evaluator module that analyzes the accuracy and through-
put of basecaller while also providing an area overhead.

SwordFish
Partition & Ma
B

User Input
Basecaller

+ DNN Description

Kernel Chunks

S TralnedINetwor Layer 1 | VIVIM Model System
\ . : . ﬁﬁ Generator Evaluator
CIM Hardware ayer .+ Crosshar Ct i « Accuracy

* Architecture Description VMM Models

* Performance
* Circuit/Device Parameters:

* Area

OR
+ Analytical Crossbar Model

Accuracy Enhancer]
+ Optional
« Offline/Online Retraining

Accuracy Enhancer

+ Hyperparameters Updated Weights

Figure 3: Overview of Swordfish framework.

We emphasize that the accuracy analysis in the System Eval-
uator module is critical and unlike evaluations of conventional
platforms, e.g., Field-Programmable Gate Arrays (FPGAs) or GPUs.
Its importance stems from the abundance of the underlying non-
idealities, variations, limitations, and hardware perturbations of
the emerging hardware paradigms [57]. From now on, we refer to
the proposed framework as Swordfish and the actual implemented
memristor-based CIM design for our target basecaller Bonito as
SwordfishAccel.

3.2 Partition & Map
To run the DNN of a basecaller on a CIM architecture, one should

map each of the VMM operations in the target DNN to the analog

memory arrays and the rest of the operations to the digital periph-
eral circuitry. The Partition & Map module takes care of this task
in Swordfish by dividing individual functions of the basecaller into
the analog or digital components of the underlying architecture.

This process is required one time for every basecaller and has two

steps.

In the first step, Swordfish decides which memory crossbars will
perform each VMM operation of each layer. For Bonito basecaller,
Swordfish decides which memory crossbars handle the VMM of
the first convolutional layer and which crossbars are responsible
for the VMMs of the following LSTM and linear layers. Swordfish
assumes that all the underlying crossbars have the same size and
readout peripheral circuitry (e.g., ADCs).

In the second step, Swordfish decides how it maps the weights to
each crossbar. Swordfish supports different programming/writing
techniques for memristor devices, such as write-read-verify (WRV)
and Set/Reset pulse programming.

In mapping and evaluation, Swordfish makes the following widely
common design choices:

o The input streams into the first layer of DNN. Swordfish does
not divide the input into chunks and leaves this task to the host.
Doing so helps Swordfish to evaluate the maximum throughput
of a basecaller [81, 96], independently of the input size.

o The next layer starts its computation as soon as the previous layer
of the basecaller produces enough values. This is also a common
assumption for evaluating the maximum possible throughput of
a DNN in simulation [9, 111].

o Multiple crossbar arrays can be simultaneously active and per-
form the necessary operations (VMM and other operations nec-
essary for the target DNN, such as activation. This assumption

ensures that full chip utilization is not limited due to power con-
straints. One can consider this parallelism to be analogous to the
concurrent activation of multiple subarrays in different banks
and bank groups in traditional DRAM [21, 109, 110].

o Swordfish optimizes its design decisions for the highest achiev-
able accuracy, throughput, and memory utilization in the stated
order. This is a common priority order for optimizations in base-
callers [81, 96, 97].

3.3 VMM Model Generator

VMM Model Generator is responsible for generating the non-
ideal output per each VMM required by the basecaller. VMM Model
Generator differentiates between constraints and non-idealities.
This is essential in a CIM design where non-idealities or constraints
do not necessarily lead to a loss in the accuracy of the application.
To model the effect of these constraints and non-idealities on the
accuracy of an application, Swordfish considers them at the lowest-
level building block where they aggregate, i.e., where their results
merge. In a memristor-based CIM architecture for a DNN-based
basecaller, such an effective place to consider the effects of con-
straints and non-idealities is the VMM operation output. Therefore,
the VMM Model Generator in Swordfish focuses on assessing the
effects of each factor on a VMM operation, while our evaluations
and analyses assess the end-to-end basecalling metric.

This module takes three types of inputs. First, it takes the re-
sults of the previous module (i.e., @ Partition & Map in Fig. 3) to
determine the size of the VMM. Second, it takes the circuit and
device description (i.e., constraints and non-idealities) that can af-
fect accuracy. Examples inputs in this category are (1) the level of
quantization, (2) the circuit variations (e.g., in inputs (e.g., DACs),
wires, and outputs (e.g., ADCs) device), and (3) device variations.
Third, it takes the weights of the target basecaller, which can be
provided directly by the user or the Accuracy Enhancer module
that applies multiple training mechanisms (Section 3.4). The mod-
ule outputs the non-ideal output vector per each input vector and
weight matrix (i.e., the expected vector result for a VMM).

Swordfish supports two different approaches for modeling a
VMM. The first approach is to use a pre-calculated library of mea-
surements on actual devices. The second approach is to use an
analytical model (e.g., a fast crossbar model (FCM) [55]). Section 5
evaluates these approaches separately.

In the first approach, Swordfish queries a library that, for a given
array size and input vector, returns an output vector randomly cho-
sen from many (> 10%) possible outputs based on measurements on
an actual crossbar with the same dimensions as the length of the ac-
tive input vector. The measurements in the library already contain
all the possible non-idealities in the target VMM operation, i.e., non-
idealities that may arise from DACs, ADCs, circuits, and devices in
the crossbar. One can build this library by measuring multiple tiles
several times. For each of these measurements, one should program
the initial values of memristors within a tile with the weight val-
ues of the target DNN to be evaluated on Swordfish. In this paper,
the distinct initial resistance states are based on the Bonito base-
caller [96]. The random choice from the library aims to account
for variations and non-idealities among different memristor-based
tiles, which can arise from different initial values of each memris-
tor device and/or manufacturing differences. By integrating real



measurements and accounting for tile-to-tile differences, we be-
lieve our methods accurately reflect non-ideality distribution in
practical settings. Although this approach accurately represents the
VMM operation considering many possible non-idealities, it lacks
the flexibility of separately studying or measuring the effects of
each possible error due to different non-idealities. This approach is
also limited to the crossbar configurations (for example, crossbars
of 64x64 and 256x256) to whose measurements one has access
(Section 4).

In the second approach, Swordfish utilizes existing analytical
models that are available for ADCs, DACs, and variation profiles of
the underlying devices in the crossbar. Fig. 4 illustrates the steps
Swordfish uses in its VMM Model Generator for this approach.
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Figure 4: An overview of the VMM Model Generator’s second
approach: using analytical models.
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In Fig. 4, Swordfish applies the analytical model for a non-ideal
DAC model (@) to the input vector of the VMM operation (@)
and obtains the non-ideal input voltages as the output vector (@).
Swordfish then applies this new vector to a crossbar with an updated
non-ideal weight matrix (@), where non-idealities have been ap-
plied to the original weight matrix (from the VMM operation) based
on the expected variations of each cell, which are usually obtained
based on generic characterization of memristor-based crossbar ar-
rays, i.e., without any peripheral circuitry or target weights specific
to a particular DNN. The output is considered a non-ideal output
current (@) that Swordfish applies to a model of non-ideal ADC
(®) and obtains the output vector (@), an output vector that might
contain some errors.

Fig. 5 presents an overview of how Swordfish models the cross-
bar non-idealities for the second approach (i.e., the analytical model
in the VMM Model Generator module) (@ in Fig. 4). For this, Sword-
fish first takes the crossbar instances (@ in Fig. 5) from the Partition
& Map module. Swordfish considers these crossbar instances as
separate matrices with digital weights (@). Then, Swordfish uses
a non-linear model for the synaptic device states (®) to map the
weight matrices of digital weights into ideal corresponding conduc-
tance matrices (@). After that, Swordfish applies to these metrics the
synaptic variations for the crossbar (®) that are determined from
an analytical model based on the estimated behavior of memristor
devices within a crossbar array. The output consists of the same
number of matrices, but now with adjusted weights (®). Swordfish
finally applies to those matrices the profile of all known circuit-
level non-idealities (@) by adding representative metrics for these
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Figure 5: An overview of modeling crossbar non-idealities in Swordfish.

non-idealities. The output consists of matrices accounting for all
variations and non-idealities (®).

3.4 Accuracy Enhancer

Since accuracy is a critical metric in basecalling, Swordfish ap-
plies several mitigation techniques to deal with the non-idealities
and their induced errors on the VMM and/or basecalling. More
specifically, Swordfish supports four different accuracy enhance-
ment techniques: (1) analytical variation-aware training (VAT) (of-
fline), (2) knowledge distillation (KD) training, (3) read-verify—write
(R-V-W) training, and (4) random sparse adaptation (RSA) retraining
(online).

3.4.1  Analytical Variation-Aware Offline Training. Swordfish sup-
ports variation-aware training (VAT) [24, 63, 78, 80] during the
training of a target DNN as the simplest method to enhance the
accuracy loss due to (1) quantization and (2) possible resistance
variations per weight, which can be analytically or experimentally
measured. Existing works randomly inject faults into the weights
of the DNN [38], or model the potential errors at the end of each
layer [38, 80]. Similarly, Swordfish utilizes the crossbar charac-
terization for the errors per VMM (i.e., the error library in the
first approach in VMM Model Generator) or an analytical crossbar
model for the errors per VMM (i.e., as in the second approach in
VMM Model Generator). Swordfish injects the modeled errors in
the training and considers the rest of the devices unaltered. Sword-
fish repeats this process for each VMM and every layer and then
retrains the basecaller network. This way, Swordfish ensures that
its retraining yields a better estimate for the errors arising from
non-idealities in the crossbar.

3.4.2  Knowledge Distillation-based Variation-Aware Training. In ad-
dition to offline VAT based on injecting random errors or potential
errors per layer discussed in Section 3.4.1, Swordfish is capable of
supporting the knowledge distillation (KD) approach as a VAT as
well, i.e., Swordfish exploits knowledge/weights that exist in an
ideal (typically a FP32-based) basecaller baseline to guide the train-
ing of SwordfishAccel, our memristor-based CIM design for Bonito.
In KD, two models exist: (1) the teacher (an ideal implementation
using high precision data format, e.g., FP32-bit format) and (2) the
student (SwordfishAccel quantized to 16-bit-width fixed-point pre-
sentation for both weights and activations). The goal is to mimic
the teacher’s output in the student by minimizing a loss function
where the target is the result of applying the softmax on the quan-
tile function associated with the standard logistic distribution (i.e.,
logit) of the teacher’s training [47]. We refer the reader to previous
works on KD [22, 47] for further detail on how a loss function can
be implemented in such a system to minimize the difference of
SwordfishAccel’s output and the teacher model’s softmax output.
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3.4.3 Read-Verify-Write (R-V-W) Training. Read-Verify-Write (R-
V-W) is a conventional error mitigation technique for non-ideal
memristor-based memories that provides cell-by-cell error compen-
sation. R-V-W is used in open-loop-off-device (OLD) [77] where
R-V-W programming and sensing loop help the actual resistance
of the device to converge to the expected target resistance. This
method involves many read-and-write operations and feedback
control for memristors, making R-V-W a slow technique to mitigate
accuracy loss. Note that to improve the accuracy in R-V-W, we need
to increase the fraction of the retrained weights (memristor devices
in our case), increasing the cost of the mitigation technique.

3.4.4 Random Sparse Adaptation Online Retraining. Swordfish uses
random sparse adaptation (RSA) [22] to map the learned DNN
model to SwordfishAccel. RSA is used to mitigate the performance
overhead of R-V-W technique [49, 77]. RSA by itself prevents only
some of the non-idealities from being materialized as inaccura-
cies and can be an offline mechanism. However, SwordfishAccel
combines it with an online training mechanism.

For its online retraining using RSA, Swordfish places a small
on-chip SRAM-based memory next to memristor-based crossbars
and distributes the learned DNN model (i.e., weights) between this
SRAM and memristor-based crossbars. The key idea Swordfish uses
is to map the weights that otherwise would map to error-prone
memristor devices to reliable SRAM cells. If one has access to the
exact profile of the underlying memristor-based memory cross-
bars, one can exploit the knowledge on which memristors and
columns are more error-prone and use this knowledge to decide
which weight to map into the crossbar and which one to the SRAM.
In our evaluations of Swordfish, we use this knowledge whenever
we use the chip measurements already used in the first approach of
the VMM Model Generator. However, Swordfish can also randomly
choose memristor devices in the crossbar and map (i.e., hardwire)
them to the SRAM. Random choice is the next best option without
knowledge about the exact error pattern of a memristor-based cross-
bar. We used this method whenever we used the second approach
(i-e., analytical model) in the VMM Model Generator (Section 3.3).

Fig. 6 presents how SwordfishAccel adopts RSA with an online
retraining mechanism (e.g., KD) in a three-step approach:
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Figure 6: Swordfish’s online error mitigation via RSA.

(1) In the first step (@), SwordfishAccel trains the original Bonito
and loads the initial weights from the Bonito DNN model into
the assigned memristor crossbar and the SRAM (@). Sword-
fishAccel considers this model as the initial model for the stu-
dent in KD.

(2) In the second step (@), SwordfishAccel performs a VMM opera-
tion as usual. However, whenever one or more of the assigned
weights to SRAM (i.e., error-prone memristors or randomly

chosen ones in Swordfish) is involved, SwordfishAccel reads
the value from the SRAM memory instead of the memristor
device. Swordfish does this by passing the inputs of correspond-
ing devices through the SRAM value instead of the crossbar,
zeroing the input for that particular memristor in the crossbar,
and then summing up the values of both paths (@).

In the third step (@), SwordfishAccel returns the results of the
VMM operation of each crossbar (@) to the retraining compo-
nent (KD in our example in Fig. 6) and performs online training
on only the weights that are mapped to the SRAM memory
to improve the accuracy loss due to non-idealities. Note that
SwordfishAccel considers the non-ideality models of crossbars,
ADCs, and DACs to the student model for every training batch
and trains the student. This includes both the initial training in
Step @ and retraining in Step @.

(4) SwordfishAccel then loads the new weights to the SRAM near

the crossbars (@) and repeats Steps @ and @.

SwordfishAccel uses KD-based variation aware training for its
Step @ in Fig. 6 online retraining. However, any other retraining
method can also replace KD in our example. Note that all the pa-
rameters are already quantized to 16-bit fixed-point precision to
present the model in SwordfishAccel accurately. Swordfish lever-
ages the weights from the converged teacher model to improve the
convergence of the student model.

RSA in Swordfish comes at the price of extra area overhead for
the considered on-chip SRAM memory, storage in the memory
controller for mapping metadata, summation of the output from
the crossbar with on-chip memory, and some additional control
logic evaluated in Section 5.
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3.5 System Evaluator

The System Evaluator module puts the results of all previous
modules of Swordfish together to evaluate the target DNN.

As inputs, this module takes the execution time for each VMM
operation, the accuracy of each VMM operation for the last layer of
the DNN (as it determines the final accuracy of the DNN), the num-
ber of active crossbars in each step of Swordfish, and information
in peripheral circuitry.

The System Evaluator module has 3 outputs:

(1) Accuracy: The System Evaluator module outputs an accuracy
number for the evaluated DNN. In SwordfishAccel, this number
shows the accuracy of the basecaller, commonly known as read
accuracy, which is the fraction of the total number of exactly
matching bases of a read to a reference to the length of their
alignment (including insertions and deletions).

(2) Basecalling throughput: The System Evaluator module out-
puts a number for inference throughput of the target DNN. In
SwordfishAccel, this number is the basecalling throughput, de-
fined as kilo-basepairs generated by the basecaller per second

Kpr). The higher the basecalling throughput, the better. This is
the most important metric to evaluate a basecalling accelerator’s
performance. Our throughput evaluations in SwordfishAccel
include the time required for read and write time for the inputs
and outputs, respectively.3

(3) Area overhead. The System Evaluator module of Swordfish
also reports area overhead based on the underlying architecture

3We use this command line in Linux: /usr/bin/time -v.



to account for the overheads of a dedicated accelerator, e.g.,
SwordfishAccel.

3.6 Swordfish Evaluation Challenges

Comprehensive, fair, and practical evaluation of Swordfish is
challenging for two main reasons. First, most of the SotA basecallers
are either not open-source [50, 81, 134] or support only specific
reads [97]. Second, current simulators and frameworks mimicking
memristor-based CIM designs are either not open-source, do not
consider the underlying non-idealities of the devices, or only sup-
port a very limited number of non-idealities, emerging technologies,
or neural networks [55, 76].

To evaluate Swordfish despite these challenges, we take two
representative examples. Specifically, for the first challenge, we
primarily compare our method with Bonito [96], an open-sourced,
universally applicable tool currently under active development
and maintenance by ONT (Section 2.1). Bonito stands out for its
exceptional accuracy and performance over its predecessors like
Guppy [134] and does not face the limited support for reads (e.g.,
Dorado [97]) or lack of open-source implementation and training
code (e.g., Helix [81], Halcyon [65], Guppy [134], and SACall [50]).
For the second challenge, we consider PUMA architecture as the
baseline architecture for the two reasons mentioned in Section 2.4.

4 Evaluation Methodology

4.1 Implementations and Models

For the performance and area studies, we significantly extended
the PUMA simulator and PUMA compiler to account for (1) Bonito’s
DNN architecture, (2) updated configurations in Core Architec-
ture of PUMA [9] based on our memory models and the TSMC
40nm [61] technology node used for peripheries, and (3) perfor-
mance and area overheads introduced by non-idealities of memris-
tors and their mitigation techniques. Note that we use Synopsys
Design Compiler [122] and synthesize the additional components
of our design in the target technology to obtain their execution
time, power, and area. We apply the prominent technology scaling
rules [106] to the configuration numbers of the PUMA architec-
ture to ensure all of our design components are based on the same
technology node.

For accuracy analysis (in both training and inference phases),
we also extensively modified Bonito’s open-source implementa-
tion [96] to consider the device characteristics and limitations of
the architecture. Unfortunately, PUMA does not allow us for such
analysis as it considers the effects of only quantization and write
variations on accuracy.

We utilize prototyped cross-array memristors as our memory
arrays and capture the variations in their spatiotemporal conduc-
tivity, execution time, and area overhead of necessary operations.
We project our characterization results of real memories to our
DNN evaluations. We also build a statistical model from our mea-
surements to capture the full picture of a larger memory model for
large-scale variations, timing, and area parameters. This model con-
tains four types of variations: (1) input DACs, (2) synaptic variations,
(3) wire resistance, and (4) output ADCs. The memory prototypes
and models used for evaluations and simulations are based on the
results of the EU project MNEMOSENE [82], concluded in 2020,
generously provided by the involved parties. The results have been

tested heavily during the project and by various metrics found in
the related literature. Table 1 shows the main parameters of our
memristor-based crossbars.

Technology and device | ReRAM HfO;/TiOx [61]
Cell configuration 1T1R (NMOS T: 460 nm/40 nm
HRS/LRS 1MQ/10kQ

Nyin/Mmax 0.03, 30

Array Sizes 64X64 and 256X256

SAV in 20mv

Table 1: Our array and device configurations.

Our study specifically evaluates Swordfish on ReRAM memris-
tors for three reasons. First, the availability of actual chip measure-
ments is essential for our non-ideality-centered study. Second, lower
energy costs for writing/programming than alternatives like PCM.
Third, ReRAM’s established status within the memristor family
provides reliable baselines and intuitions for device-level features,
enhancing the credibility of our proposal.

4.2 Simulation Infrastructure

We ran our baseline Bonito basecaller and software implemen-
tation of Swordfish on a 128-core server with AMD EPYC 7742
CPUs [8], 500GB of DDR4 DRAM, and 8 NVIDIA V100 [88] cards.
We train and evaluate Swordfish accuracy and software results on
our NVIDIA cards (with 32-bit floating-point precision). We use the
nvprof profiler [141] for the profiling experiments on GPU.
4.3 Evaluation Metrics

We use metrics output by the System Evaluator module for our
comparisons. Section 3.5 clarifies these metrics.

4.4 Datasets and Workloads

Table 2 provides datasets from a MinION R9.4.1 flowcell [135,
136] we use in our evaluations.

[ Dataset (Organism) [ ]# Reads]Reference Genome Size (bp)]
Acinetobacter pittii
D1 163770801 4,467 3,814,719
Haemophilus haemolyticus
D2 MIC132_1 8,669 2,042,591
Klebsiella pneumoniae
D3 NUH29 11,047 5,134,281
D4 Klebsiella pneumoniae 11.278 5337491
INF042 ’ e

Table 2: Read and Reference Datasets for our Basecalling
Evaluation.

5 Swordfish Evaluation

We first use Swordfish to investigate the impact of constraints
and non-idealities of a PUMA-based architecture (Section 2.3) on
the accuracy of the Bonito basecaller [96]. We call this design the
Ideal-SwordfishAccel, as it achieves the highest performance for
our memristor-based hardware accelerator without any accuracy
enhancement technique. We then explore the effect of the accuracy
enhancement mechanisms in Swordfish applied to deal with the
inaccuracies of the memristor-based accelerator as it affects the
Bonito basecaller’s accuracy. The results of this design are presented
under Realistic-SwordfishAccel.

5.1 Effect of Quantization on Accuracy without
Accuracy Enhancement

Since both the weights and activations in the original DNN are in
FP32 format, Swordfish can opt for quantizing one or both of them.
The degree of the quantization can differ depending on how much



each parameter impacts the overall accuracy. Swordfish considers
seven different configurations: the default configuration (DFP 32-
32), where weights and activations use the FP32* format, and 6 FPP
X-Y® formats, where X and Y denote the fixed-point precision of
weights and activations, respectively. Swordfish currently only sup-
ports power-of-two precision levels for its quantized configurations.
Table 3 presents the accuracy of different configurations.

[ ][DFP 32-32]FPP 16-16]FPP 8-8]FPP 8-4FPP 4-8]FPP 4-4]FPP 4-2]
Di[[ 97.32% | 9732% | 97.12% | 97.12% | 95.42% | 95.62% | 93.62%
D2|| 97.32% | 97.32% | 96.72% | 96.72% | 94.92% | 95.42% | 92.42%
D3[| 97.32% | 9732% | 96.02% | 95.82% | 93.62% | 95.12% | 93.72%
D4a[| 97.32% | 97.32% | 96.42% | 96.42% | 94.22% | 95.32% | 93.62%

Table 3: Accuracy evaluation after quantization.

We make two major observations. First, Bonito’s architecture
can tolerate some quantization level without accuracy loss. More
specifically, across all evaluated datasets, quantization down to 16
bits does not affect the accuracy at all, and quantization down to 8
bits reduces the accuracy by less than 9% even in extreme cases. We
conclude that Ideal-SwordfishAccel can still reduce the precision
of its network from a 32-bit FP format to 16-bit-width fixed point
precision without accuracy loss. This way, Ideal-SwordfishAccel
can (1) accelerate the network on a platform limited to fixed point
format representation and (2) improve the energy efficiency of the
network via lower data precision. This observation is on par with
similar studies [54, 111, 120] exploiting quantization as a technique
to improve the performance and energy efficiency of a DNN with a
negligible accuracy loss.

Second, tolerance to quantization varies depending on the input
dataset. This makes the effect of quantization on accuracy workload-
dependent. However, the accuracy drop for different quantization
configurations follows more-or-less a similar trend irrespective of
the dataset, i.e., they all follow a decreasing trend with reduced
data representation. We conclude that Swordfish’s understudy net-
work (Bonito) tolerates some quantization but will offer very low
accuracy for extreme quantization (i.e., lower than 4-bit precision)
irrespective of the dataset. We note that an accuracy drop of ~5%
and higher is considered unacceptable for a future basecaller, as
accuracy is the most critical metric in SotA basecallers. This obser-
vation is consistent with prior works on smaller [55] or different
types of networks [120].

We conclude that quantization is a viable solution to tackle data
representation constraints in hardware accelerators and, therefore,
can be used in a framework such as Swordfish. However, accuracy
loss due to quantization (applied with the expectance of accuracy
loss due to variations and non-idealities) leads us to consider only
down to 16 (or possibly 8) bits of precision for both weights and
activations before a significant accuracy drop occurs. Therefore, the
following studies consider only a 16-bit integer as the quantization
level.

5.2 Effect of Non-idealities on Accuracy without
Accuracy Enhancement

We examine the effect of four non-idealities on basecalling ac-
curacy. The results presented in this section belong to the second
approach of modeling non-idealities in the VMM Model Generator
module, i.e., using analytical modeling (see Section 3.3).

4FP stands for floating point.
SFPP stands for fixed point precision.

5.2.1 Effect of Write Variation on Accuracy. Write variation can
single-handedly impact the accuracy results of a VMM operation [22,
54]. Therefore, we analyze it separately.

Fig. 7 presents the effects of write variations on accuracy. The
x-axis sweeps the write variation rate. The error bars account
for the accuracy variations on different write variation rates over
1000 runs of the model. Since the models for write variation are
circuit-dependent and have varying probabilities of affecting the
stored/programmed data, this methodology provides us with a bet-
ter insight into the effect of this non-ideality on accuracy.
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Figure 7: Accuracy after taking into account write variation.

We make two main observations. First, slight write variation can
lead to a significant drop in the accuracy of end-to-end basecalling.
To a great extent, this is on par with previous works’ observation of
the write variation impact on VMM accuracy [22, 54]. For example,
the accuracy drops vary from 3.30% to 87.34% for D1 and from 3.24%
to 85.76% for D4.

Second, the exact accuracy loss depends on the input dataset,
i.e., the accuracy is workload-dependent and varies for the same
write variation among different subfigures in Fig. 7. For example,
for the same write variation rate of 25%, the accuracy on our two
datasets (i.e., D2 and D4) can vary by 0.93%.

We conclude that write variation in Ideal-SwordfishAccel can
debilitate the basecalling process significantly. In other words, write
variation can eliminate all the potential performance and energy ef-
ficiency benefits of such a memristor-based design if not mitigated
correctly. Therefore, unlike the quantization constraint, we should
closely control the write variations in any future design for an ac-
ceptable basecaller. Fortunately, some previous works [22, 37, 100]
propose mitigation techniques that, when combined, can provide
us with reasonable (e.g., amount of < 10%) write variation. From
now on, we consider only up to 10% write variation (as defined in
Section 2.3) in our evaluations.

5.2.2  Effect of Combined Non-idealities on Accuracy. Fig. 8 and
Fig. 9 show the accuracy after considering all other sources of non-
idealities (see Section 2.3) for our four datasets on two different
crossbar sizes of 64x64 and 256x256, respectively. The error bars
show the distribution when considering 10% write variation over
1000 runs. For each dataset, Fig. 8 and Fig. 9 present the accuracy
results for five configurations presented as individual bars in the
figures. The first three bars from the left present the results for
individual non-idealities, i.e., synaptic+wire resistances (Synap-
tic+ Wires), sensing+ADC circuitry (Sense+ADC), and DAC+driver
circuitry (DAC+Driver), respectively, that Swordfish accounts for in
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Figure 8: Accuracy after taking into account non-idealities on 64x64 crossbars for the 4 datasets.
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Figure 9: Accuracy after taking into account non-idealities on 256x256 crossbars for the 4 datasets.

its second approach of modeling non-idealities in the VMM Model
Generator module, i.e., using analytical modeling (Section 3.3). The
fourth bar, Combined, accounts for all the non-idealities from the
same analytical model simultaneously. The fifth and last bar, Mea-
sured, considers all the non-idealities from the library of real chip
measurements in the first approach of modeling non-idealities in
the VMM Model Generator (see Section 3.3).5 We make six main
observations.

(1) A combination of non-idealities (i.e., each of the bars labeled
with "Combined" or "Measured" or the 4th and the 5th bar per
dataset in Fig. 8 and Fig. 9) leads to a significant accuracy loss
irrespective of the dataset or crossbar size. For example, observe
the accuracy loss when considering all the non-idealities in
an analytical way (bars labeled as "Combined"). The accuracy
loss varies from 18.32% to 31.32% (@ in Fig. 8) across different
datasets (i.e., D1 to D4). The same trend can be observed in
Fig. 9.

(2) The impact of individual non-idealities (i.e., Synaptic+Wires,
Sense+ADC, or DAC+Driver) on the accuracy (loss) is different.
For example, observe the accuracy loss of DAC+Driver versus
Synaptic+Wires in D1 (@ in Fig. 8). For the same dataset, the
accuracy loss varies from 13.32% for DAC+Driver to 15.34% for
Synaptic+Wires. A similar difference also exists in crossbars of
size 256X256 in Fig. 9.

(3) The accuracy loss for combined non-idealities is non-additive.
For example, in D1, the total accuracy loss of Measured is 35.96%
(® in Fig. 8) yet the simple addition of numerical accuracy loss
of Synaptic+Wires, Sense+ADC, and DAC+Driver totals 20.32%.
We conclude that certain errors mask others.

(4) Accuracy loss values follow a similar trend irrespective of the
dataset. See the trendlines @ in Fig. 8 for D2 and D3. However,
absolute accuracy loss values vary from one dataset to another.

(5) The smaller the crossbar, the lower the accuracy loss. For ex-
ample, for D1, we have lower accuracy loss (of 20.32% versus
26.33%) when using a 64X64 crossbar compared to a 256X256

®We leave the exploration of every possible combination of individual non-idealities
to future work.

crossbar (® in Fig. 8 vs. ® in Fig. 9 for the Measured configu-
ration). This is because a smaller crossbar has mostly smaller
accumulative noise induced in wires of a smaller array.

(6) Different non-idealities affect the same dataset differently for
different crossbar sizes. For example, the accuracy loss due to
non-idealities in DAC+Driver is more dominant than those in
Sense+ADC on a 64X64 crossbar, while this is the opposite for a
256X256 crossbar. See ® in Fig. 8 and Fig. 9.

Even for small yet practical crossbars of size 64x64, the accuracy
loss observed in this section under both Combined and Measured
configurations in Fig. 8 and Fig. 9 is still significant (e.g., from 22.19%
to 24.32%) and unacceptable for a basecalling step that affects many
other steps of a genome sequencing pipeline. We conclude that non-
idealities in the memristor-based CIM designs, especially when
combined, can be detrimental to basecalling accuracy and must
be accounted for and mitigated before considering such a design
useful in any other aspect.

5.3 Effect of Accuracy Enhancement on
Quantized Basecallers

Fig. 10 shows the results of applying Swordfish’s accuracy en-
hancement techniques to a quantized Bonito basecaller. The x-axis
presents six configurations for quantization as defined in Section 5.1.
For each quantization configuration, we evaluate five accuracy en-
hancement techniques, namely VAT, KD, R-V-W, RSA+KD (see Sec-
tion 3.4), and a combination of all techniques labeled as All. The
y-axis shows the accuracy of each technique for the corresponding
quantization configuration. The horizontal line marked as Baseline
(DFP 32-32) is the baseline accuracy as defined in Section 5.1.

We observe that retraining with quantization is an effective
way to mitigate the accuracy loss induced by quantization. Our
results show that with only 150 extra retraining epochs, accuracy
improves by 5% on average, for a basecaller quantized down to
8-bit. By applying all quantization-aware retraining methods that
we discuss in Section 5.1, Swordfish can retain the same accuracy
as the Bonito basecaller with 32-bit floating point precision. This
result is in agreement with the prior work on different types of
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Figure 10: Accuracy enhancement after quantization.

neural networks [55]. However, Swordfish is the first work to show
this result for genomic basecalling. From now on, we use 16-bit
precision quantization for all evaluations we show in the remainder
of this paper. We conclude that the proposed mitigation mechanisms
effectively mitigate the accuracy loss due to a reasonable amount
of quantization, e.g., from 32-bit to 16-bit in the Bonito basecaller.

5.4 Effect of Accuracy Enhancement on
Non-idealities

5.4.1  Effect of Accuracy Enhancement on Write Variation. Fig. 11
presents the effects of our accuracy enhancement techniques (see
Section 3.4) considering different write variation rates across our
four datasets (D1-D4). The horizontal dotted line shows the baseline
accuracy using DFP 32-32 (see Section 5.1) for the Bonito basecaller
in all figures in Fig. 11. Fig. 11-(a)-(d) evaluate the effect of VAT, KD,
R-V-W, RSA+KD separately. Fig. 11-(e) considers all of our accuracy
enhancement mechanisms together (Combined), and Fig. 11-(f) av-
erages the results of each accuracy enhancement technique over all
the datasets (Averaged).” We make four major observations from
Fig. 11.

First, individual accuracy enhancement mechanisms evaluated in
Fig. 11-(a)-(d) all improve the accuracy. However, their effectiveness
reduces as the write variation rate increases.

Second, the online mechanism (RSA+KD) in Fig. 11-(d) outper-
forms all the offline techniques in Fig. 11-(a)-(c). R-V-W in Fig. 11-(c)
comes second in terms of accuracy. However, the difference between
RSA+KD and R-V-W widens as the write variation rate increases.

Third, combining all the accuracy enhancement mechanisms
(Combined in Fig. 11-(e)) outperforms any individual technique
over every single dataset and write variation rate.

The results in Fig. 11 consider the cases in which Swordfish maps only 5% of weights
to the SRAM in our RSA-based online retraining approach (see Section 3.4.4). We will
revisit this number in Section 5.5.
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Fourth, averaged over all the datasets (Averaged in Fig. 11-(f)),
Combined mitigation techniques always produces the highest accu-
racy on average as well. However, on average, our online RSA+KD
technique achieves a close accuracy (less than 0.001% difference)
for low write variation rates, i.e., write variation less than 10%.)

These results suggest that even with multiple accuracy enhance-
ment techniques, only minor write variations (e.g., less than 10%)
can be tolerated. We conclude that a memristor-based CIM-enabeld
accelerator for basecalling can be effective even with write varia-
tions, but such variations must be kept low (e.g., up to 10%). For-
tunately, the projected write variation rate for memristor-based
devices [22, 55] suggests the likelihood of achieving this percentage
rate. For the rest of this manuscript, we assume a write variation of
10%.

5.4.2  Effect of Accuracy Enhancement for Combined Non-idealities.
Fig. 12 presents the accuracy of basecalling with different accuracy
enhancement techniques in crossbars of 64x64 for the modeled
non-idealities. For the non-idealities, we consider the five varia-
tions of Synaptic+Wires, Sense+ADC, DAC+Driver, Combined, and
Measured defined in Section 5.2.2. In Fig. 12, we evaluate five ac-
curacy enhancement techniques of VAT, KD, R-V-W, RSA+KD, and
All (as defined in Section 5.4.1) per non-ideality. Fig. 13 presents
the same experiments for crossbars of 256x256. As we conclude in
Section 5.4, we assume 10% write variation and 5% of the weights
are mapped to the SRAM in the online retraining approach (see
Section 3.4.4). We present our accuracy results averaged across
all the evaluated datasets. We make four main observations from
Fig. 12.

(1) Combining of individual accuracy enhancement techniques
does not improve the accuracy in an additive manner. For ex-
ample, each of VAT, R-V-W, and RSA+KD in Fig. 12 improves
accuracy due to Synaptic+Wires by 6.85%, 10.64%, 10.85%, respec-
tively. However, when we consider all non-idealities together
in the All configuration, accuracy improves by only 11.84% (@
in Fig. 12).

(2) The effectiveness of an individual accuracy enhancement tech-
nique depends on the underlying error and non-ideality it
targets. For example, VAT is as effective as RSA+KD for non-
idealities due to DAC+Driver (94.22% vs. 94.32%). However, the
gap between the two approaches widens for non-idealities due
to Synaptic+Wires (87.32% vs. 91.32%). See @ in Fig. 12.
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Figure 11: Accuracy after combining enhancement techniques over different write variations.
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Figure 13: Accuracy after enhancement mechanisms for evaluated non-idealities on 256X256 crossbars.

(3) Accuracy enhancement techniques improve accuracy with a
similar trend over different crossbar sizes (@ in Fig. 12 and
Fig. 13). Although these results are averaged over our datasets,
one can make the same observation on each dataset as well.

(4) Accuracy enhancement techniques are more effective for larger
crossbars than for smaller ones (e.g., 256x256 compared to
64x64). This is expected because there is more room for ac-
curacy improvement for these larger crossbars, as their inaccu-
racies are higher. For example, we observe 22.07% improvement
in accuracy for 256x256 crossbars (@ in Fig. 13) compared to
16.24% for 64x64 (@ in Fig. 12), after all of the accuracy enhance-
ment techniques are applied (All) over all existing non-idealities
(i.e., the Measured configuration).

We conclude that the basecalling accuracy of SwordfishAccel
can match SotA levels by using robust techniques that build on
each other employing reasonable crossbar sizes (e.g., 64x64) and
successfully accounting for substantial circuit variations, like write
variations.

5.5 Throughput Analysis of SwordfishAccel

Fig. 14 shows the inference throughput for Bonito on a GPU
(Bonito-GPU) card discussed in Section 4.2, Ideal-SwordfishAccel,
Realistic-SwordfishAccel-RVW, Realistic-SwordfishAccel-RSA, and
Realistic-SwordfishAccel-RSA+KD. We show the results for each
of the four datasets and the average results over all datasets. The
results are for a crossbar of size 64x64 and a write variation rate of
10%, and assuming 5% of weights are placed in SRAM for Realistic-

SwordfishAccel-RSA and Realistic-SwordfishAccel-RSA+KD.
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Figure 14: Throughput comparison of Swordfish variations.
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We make four key observations. First, Ideal-SwordfishAccel im-
proves the basecalling throughput over Bonito-GPU for all datasets,
by 413.6X on average (@ in Fig. 14). We expect such a large improve-
ment in throughput because SwordfishAccel is highly optimized for
the main dominant kernel in the underlying DNN of Bonito, namely
VMM, and avoids unnecessary data movement while harvesting
the maximum parallelism.

Second, all versions of Realistic-SwordfishAccel (i.e., Realistic-
SwordfishAccel-RVW, Realistic-SwordfishAccel-RSA, and Realistic-
SwordfishAccel-RSA+KD) have lower performance than Ideal--
SwordfishAccel, irrespective of the dataset. Performance loss with
a realistic Swordfish accelerator is expected because each realistic
version adds overheads to mitigate accuracy loss due to realistically-
modeled non-idealities, which directly affect the performance of a
VMM operation. For example, RSA adds overheads due to (1) the
extra checks when reading some weights from the on-chip SRAM
memory and (2) additional logic for combining the results from the
memristor-based crossbar and on-chip memory readout.

Third, not all versions of Realistic-SwordfishAccel outperform
Bonito-GPU. More specifically, if we use R-V-W for mitigating non-
idealities (Realistic-SwordfishAccel-RVW in Fig. 14), the overhead
due to additional verifications and writes significantly reduces the
performance of basecalling throughput compared to Bonito-GPU
by 30% on average (@ in Fig. 14).

Fourth, Realistic-SwordfishAccel-RSA and Realistic-Swordfish-
Accel-RSA+KD provide, on average, 5.24x and 25.7x higher through-
put compared to Bonito-GPU, respectively (@ and @ in Fig. 14).
Note that, for the same accuracy, Realistic-SwordfishAccel-RSA+KD
requires fewer weights inside the SRAM than Realistic-Swordfish-
Accel-RSA due to the retraining using KD. Hence, Realistic-Sword-
fishAccel-RSA+KD is faster.

We conclude that a realistic basecalling accelerator designed
using Swordfish by taking into account and mitigating all non-
idealities of memristor-based CIM can significantly accelerate base-
calling, yet its benefits are much lower than a corresponding ac-
celerator that does not mitigate such non-idealities and thus has
much lower accuracy.



5.6 Area vs. Accuracy Analysis

Fig. 15 shows the tradeoff between accuracy and area in Realistic-
SwordfishAccel-RSA+KD (see Section 5.5) for two different crossbar
sizes (6464 on the left and 256256 on the right), with four different
percentages of weights (i.e., 0%, 1%, 5%, and 10%) assigned to the
SRAM memory (see Section 3.4.4). The area numbers show the
absolute area for implementing Realistic-SwordfishAccel-RSA+KD
considering the overhead of RSA+KD discussed in Section 3.4.4. The
red dashed line shows the accuracy of the original Bonito basecaller.
We make three main observations.
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Figure 15: Accuracy vs. Area evaluation of Realistic-Sword-
fishAccel-RSA+KD.

First, the more weights are assigned to SRAM, the higher the
accuracy of Realistic-SwordfishAccel-RSA+KD. This is expected
because we effectively reduce the non-idealities of the system by
using more SRAM cells to remap non-ideal memristors.

Second, the area of extra SRAM cells used in Realistic-Sword-
fishAccel-RSA+KD increases significantly with the percentage of
weights assigned to SRAM. In contrast, the accuracy improvement
saturates and does not increase significantly beyond 5% of weights
assigned to SRAM.

Third, assigning only 5% of weights to SRAM is sufficient to be
within 5% of Bonito-GPU’s accuracy for the 64x64 crossbar.

We conclude that accounting for non-idealities in different ways
exposes tradeoffs between accuracy and area overhead, which our
Swordfish framework enables the designer to rigorously explore.

6 Discussion and Future Work

6.1 Applicability of Swordfish Looking forward

Swordfish emphasizes the importance of a framework for evalu-
ating multiple metrics when designing a memristor-based CIM ac-
celerator targeting large DNNs that require throughput acceleration
while having stringent bound for another metric, e.g., accuracy (in
the presence of emerging technologies with many non-idealities).

Swordfish’s realistic results, Realistic-SwordfishAccel, for Bonito,
a large DNN, challenge the notion that DNN-based applications
naturally thrive on memristor-based CIM due to the inherent redun-
dancy present in large neural networks. Although Realistic-Sword-
fishAccel might not currently offer basecalling accuracy on par with
state-of-the-art methods, its large (25.7%) enhancement in perfor-
mance (Section 5.5) at a much higher accuracy than baseline CIM
marks it as an advantageous development. Even in the presence of
memristor-based CIM non-ideality, Swordfish still shows promise,
and Realistic-SwordfishAccel still maintains a competitive accuracy
in basecalling by deploying a unique synergy of mitigation strate-
gies (against non-idealities and variations) on moderately-large
crossbar designs (e.g., 64X64 or 256x256). Our results in Section 5

detail this. Given our results, we believe it is productive and im-
portant to find more solutions to the memristor-based CIM non-
idealities going forward; we believe some solutions will come with
memristors becoming more mature, and some will come with more
potent accuracy enhancement techniques and HW/SW co-design
methods.

6.2 Other DNN-based Applications

Our paper discusses Swordfish as a framework for accelerating
basecalling using a memristor-based CIM architecture. Our results
(Section 5) show the unique nature of the large DNN in Bonito,
which, despite its inherent redundancy, does not quite reach SotA
accuracy on memristor-based CIM, thus presenting an exciting chal-
lenge. This intriguing finding encourages a deeper exploration into
CIM designs for large DNNs, reminding us not to rely solely on the
scalability assumptions based on small network evaluations, such
as simple CNNs for MNIST. Our results also demonstrate a large
acceleration opportunity for basecalling using SwordfishAccel if we
can mitigate the memristor-induced accuracy loss through HW/SW
co-design approaches. We believe other DNN-based applications
that use memristor-based CIM accelerators (e.g., [22, 55, 146]) can
also benefit from our approach and Swordfish. For example, large
DNN models in autonomous driving (e.g., [64, 75, 146]) that require
accurate yet high-throughout and low-latency execution can use
a Swordfish-like approach to build memristor-based CIM acceler-
ators for their underlying large DNNs. We believe and hope that
Swordfish can aid such applications in terms of both accuracy and
performance.

6.3 Better Accuracy Enhancement Techniques

Our results show that accuracy enhancement can pave the way
toward SwordfishAccel becoming a reliable solution. Our online
retraining mechanism shows the highest potential to improve the
accuracy loss. We believe there needs to be more research on bet-
ter mitigation techniques for existing and future non-idealities in
memristor-based designs. Specifically, we suggest hardware/software
co-design solutions such as our RSA+KD technique in Section 3.4.4.
Hardware-based solutions to mitigate non-idealities [25] that are
orthogonal to our RSA+KD approach is also an example of possible
avenues of future work.

7 Related Work

To our knowledge, Swordfish is the first framework that en-
ables evaluating the acceleration of large Deep Neural Networks
(DNNs) on memristor-based Computation-In-Memory (CIM) de-
signs considering hardware non-idealities. We have already com-
pared Swordfish extensively to the currently-used version of the
Bonito basecaller in Section 5 in terms of accuracy, throughput, and
area overhead. This section briefly discusses related prior works
on basecallers and CIM accelerators.

7.1 Genomic Basecallers

Several recent works propose approaches and techniques to
either improve the accuracy of basecalling or accelerate it with
minimum accuracy loss. These works take three main approaches:
(1) new DNN architectures (e.g., [92, 95-97, 120, 134, 140]), (2) new



hardware platforms and designs such as GPUs and FPGAs to ex-
ecute previously-proposed basecallers with minimum modifica-
tions (e.g., [81, 120]), and (3) software techniques such as quan-
tization to reduce the computation and storage overhead (e.g.,
[32, 35, 52, 74, 120, 124, 140]).

In contrast to these approaches, Swordfish is a framework for
the evaluation of DNN-based (basecalling) accelerators. As such,
Swordfish is orthogonal to prior works in basecalling, enabling
proper evaluation of relevant works in the context of memristor-
based in-memory acceleration.

7.2 Computation-In-Memory Accelerators

Many previous works investigate how to provide new function-
ality using compute-capable memories based on conventional (e.g.,
[1, 2, 36, 40, 43, 72, 99, 108, 110]) and emerging memory technolo-
gies (e.g., [9, 27, 56, 59, 68, 73, 101, 111, 116, 117, 119, 121, 139, 144])
to help solve the data movement overheads in today’s systems.
These works propose new functionality in at least three major cat-
egories: (1) support for logical operations (e.g., [26, 73, 86, 110, 119,
121, 139, 144]), (2) support for complex operations, functions, and
applications (e.g., [1, 36, 72, 89, 111, 112, 116, 117, 143]), and (3) pro-
gramming and system support for the integration and adoption of
such accelerators (e.g., [2, 3, 9, 19, 27, 55, 86, 111, 144, 145]).

Several prior works(e.g., [22, 51, 55, 128]) investigate the new
requirements, tradeoffs, and challenges that arise from using the
CIM paradigm (e.g., dealing with non-idealities in the analog op-
erations). To our knowledge, no work has proposed a complete
solution or framework for these challenges; thus, this area requires
further investigation.

Swordfish aligns with these works as it provides (1) new func-
tionality for compute-capable memristors at the application level
for accelerating genomic basecalling and (2) a framework for eval-
uating the practical challenges posed by the non-idealities in the
memristor computation through mitigation techniques.

8 Conclusion

This paper introduces Swordfish, a modular and extensible frame-
work for accelerating the evaluation of genomic basecalling via a
memristor-based Computation-In-Memory architecture. Swordfish
includes a strong evaluation methodology, mitigation strategies
for hardware non-idealities, and characterization results to guide
the modeling of memristors. Using Swordfish, we demonstrate the
significant challenges of using non-ideal memristor-based compu-
tations for genomic basecalling and how to solve them by com-
bining multiple mitigation techniques at the circuit and system
levels. We demonstrate the usefulness of our findings by devel-
oping SwordfishAccel, a concrete memristor-based CIM design
for our target basecaller Bonito that uses accuracy enhancement
techniques guided by Swordfish. We conclude that the Swordfish
framework effectively facilitates the development and adoption of
memristor-based CIM designs for basecalling, which we hope will
be leveraged by future work. We also believe that our framework is
applicable to other DNN-based applications and hope future work
takes advantage of this.
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