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Abstract
Large Language Models (LLMs) face an inherent challenge: their
knowledge is confined to the data that they have been trained on.
This limitation, combined with the significant cost of retraining ren-
ders them incapable of providing up-to-date responses. To overcome
these issues, Retrieval-Augmented Generation (RAG) complements
the static training-derived knowledge of LLMs with an external
knowledge repository. RAG consists of three stages: (i) indexing,
which creates a database that facilitates similarity search on text
embeddings, (ii) retrieval, which, given a user query, searches and
retrieves relevant data from the database and (iii) generation, which
uses the user query and the retrieved data to generate a response.

The retrieval stage of RAG in particular becomes a significant
performance bottleneck in inference pipelines. In this stage, (i) a
given user query is mapped to an embedding vector and (ii) an
Approximate Nearest Neighbor Search (ANNS) algorithm searches
for the most semantically similar embedding vectors in the database
to identify relevant items. Due to the large database sizes, ANNS
incurs significant data movement overheads between the host and
the storage system. To alleviate these overheads, prior works pro-
pose In-Storage Processing (ISP) techniques that accelerate ANNS
workloads by performing computations inside the storage system.
However, existing works that leverage ISP for ANNS (i) employ
algorithms that are not tailored to ISP systems, (ii) do not acceler-
ate data retrieval operations for data selected by ANNS, and (iii)
introduce significant hardware modifications to the storage system,
limiting performance and hindering their adoption.
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We propose REIS, the first Retrieval system tailored for RAGwith
In-Storage processing that addresses the limitations of existing im-
plementations with three key mechanisms. First, REIS employs
a database layout that links database embedding vectors to their
associated documents, enabling efficient retrieval. Second, it en-
ables efficient ANNS by introducing an ISP-tailored algorithm and
data placement technique that: (i) distributes embeddings across all
planes of the storage system to exploit parallelism, and (ii) employs a
lightweight Flash Translation Layer (FTL) to improve performance.
Third, REIS leverages an ANNS engine that uses the existing com-
putational resources inside the storage system, without requiring
hardware modifications. The three keymechanisms form a cohesive
framework that largely enhances both the performance and energy
efficiency of RAG pipelines. Compared to a high-end server-grade
system, REIS improves the performance (energy efficiency) of the
retrieval stage by an average of 13× (55×). REIS offers improved
performance against existing ISP-based ANNS accelerators, without
introducing any hardware modifications, enabling easier adoption
for RAG pipelines.

CCS Concepts
• Information systems→ Top-k retrieval in databases; •Hard-
ware →Memory and dense storage.

Keywords
Retrieval-Augmented Generation, In-Storage Processing, SSD, LLM

ACM Reference Format:
Kangqi Chen, Rakesh Nadig, Manos Frouzakis, Nika Mansouri Ghiasi, Yu
Liang, Haiyu Mao, Jisung Park, Mohammad Sadrosadati, and Onur Mutlu.
2025. REIS: A High-Performance and Energy-Efficient Retrieval System
with In-Storage Processing. In Proceedings of the 52nd Annual International
Symposium on Computer Architecture (ISCA ’25), June 21–25, 2025, Tokyo,
Japan. ACM, New York, NY, USA, 22 pages. https://doi.org/10.1145/3695053.
3731116

1171



ISCA ’25, June 21–25, 2025, Tokyo, Japan Chen et al.

1 Introduction
The rapid development of Large Language Models (LLMs) [73, 74,
122, 181, 272, 331] during the past decade has led to their wide-
spread adoption, as witnessed by the popularity of chatbots such
as ChatGPT [222], Gemini [271, 272] and DeepSeek [181]. Despite
this progress, modern LLMs remain limited in generating responses
only from data present in their training sets. The significant cost and
hardware requirements [73, 181, 285] of training further compound
this problem, making frequent retraining on new data impractical,
thus limiting the effectiveness of LLMs in especially domain-specific
and real-time scenarios [119, 120, 200].

Retrieval-Augmented Generation (RAG) [24, 39, 45, 77, 83, 84,
111, 123, 124, 145, 166, 169, 232, 233, 253, 303, 314, 324, 326] presents
a compelling solution to this problem by leveraging information
retrieval techniques to feed relevant content from a document data-
base into LLMs for text generation. At inference-time, RAG systems
retrieve documents from the database that are relevant to user
queries, using these to complement the training-derived knowl-
edge of LLMs and generate contextually relevant responses. Many
recent works demonstrate the applicability of RAG to fields such
as healthcare [186, 287, 309, 325], law [56, 105, 185, 304], finance
[322, 329, 336], and scientific research [156, 302].

The general workflow of RAG consists of a pipeline comprised
of three stages: (i) indexing, (ii) retrieval, and (iii) generation. First,
the indexing stage is an offline process that builds a vector database
of high-dimensional embeddings [58, 158, 160, 164, 212, 221, 274].
Indexing employs algorithms that cluster similar data or create
graph-like structures [63, 68, 195, 343], in order to facilitate future
search operations on the data. Second, for each incoming query, the
retrieval stage identifies document chunks that are semantically
relevant to the query. To perform this, RAG employs a process
known as dense retrieval [81, 108, 335], which encodes the query in
the same vector space as document chunks and performs a similarity
search between the query and the database embeddings. Third, the
generation stage feeds both the identified document chunks and
the query into the LLM to generate the final response.

Although dense retrieval enables accurate semantic similarity
comparison between incoming queries and document chunks [83,
273, 274, 335], the large embedding space results in expensive dis-
tance computations. For RAG pipelines, a retriever that achieves
both high recall and low latency is essential because it (i) determines
the quality of generated responses, and (ii) resides in the critical
path of the response generation process. To strike a balance between
these two conflicting objectives, RAG commonly performs dense
retrieval with Approximate Nearest Neighbor Search (ANNS) tech-
niques, e.g., [78, 79, 97, 109, 153, 172, 183, 194, 232, 295]. Examples
of such techniques are: (i) employing data structures that accelerate
the search [63, 195, 328, 343], and (ii) quantizing data to reduce the
computational complexity [116, 239] of search operations without
significantly affecting recall.

The reduced computational complexity of ANNS renders I/O
data transfers a significant bottleneck that limits search perfor-
mance [106, 178, 299, 310]. As a result, several works [106, 178, 299,
310] propose In-Storage Processing (ISP) as a promising solution
to accelerate ANNS-based workloads [79, 81, 108, 170, 330, 333].
In particular, NDSearch [299] demonstrates that (i) storage I/O

accounts for up to 75% of the end-to-end ANNS latency, and (ii)
ISP improves ANNS performance by 31.7× over a conventional
CPU-based system, effectively mitigating the aforementioned I/O
bottleneck.

We empirically make a similar observation for RAG pipelines,
where the ANNS-based retrieval stage becomes the performance
bottleneck due to substantial I/O overheads, as presented in Sec. 3.1.
For example, when examining a RAG database containing 41.5 mil-
lion document entries [60], the I/O traffic from the storage system
accounts for 84% of the overall latency of the entire RAG pipeline.
Although various software and hardware solutions that reduce the
storage footprint do exist, these approaches are either unscalable
(e.g., quantization methods [81, 135, 209]) or unsustainable (e.g.,
memory expansion [113]). We conclude that In-Storage Process-
ing (ISP) techniques are essential for fundamentally addressing the
critical I/O data movement bottleneck in RAG pipelines.

Existing ISP-based ANNS accelerators [106, 178, 299, 310] face
three key limitations that hinder their application to RAG work-
loads. First, previous works employ search algorithms that cause
performance degradation in ISP systems. Graph-based algorithms
[115, 195] used by ISP accelerators [178, 299] perform searches us-
ing graph traversal, a sequential process. During graph traversal,
the algorithm determines the next vertex to visit in the graph based
on the analysis of the vertex currently being visited. However, this
process exhibits irregular data [75, 76] access patterns, complicating
optimization and efficient execution in ISP systems. Second, existing
ISP schemes mainly focus on accelerating ANNS, the search stage
in RAG applications, without optimizing the document retrieval
stage, which, as we show in Sec. 3.2, contributes significant latency
to the RAG pipeline. Third, in their quest to accelerate ANNS appli-
cations, existing ISP schemes introduce significant storage [106] or
hardware [192] overheads.

Our goal is to fundamentally alleviate the I/O data movement
bottlenecks in the retrieval stage of the RAG pipeline. To this end,
we propose REIS, A Retrieval system with In-Storage Processing
that employs three new key ideas: 1) an efficient ISP implementation
of the clustering-based Inverted File (IVF) algorithm [63, 328, 343]
to improve end-to-end retrieval performance, 2) a new low-cost
hardware-assisted mechanism in the storage system to link em-
beddings to their corresponding document chunks, enabling their
faster retrieval, 3) a customized in-storage ANNS computation en-
gine using the already available resources within a modern storage
system to enhance the energy efficiency of the retrieval process
without additional hardware.

Key Mechanism. To implement the aforementioned ideas, REIS
leverages three key mechanisms. First, we propose an ISP-tailored
data placement technique and execution flow that take into account
the properties of the Inverted File (IVF) algorithm [63, 343]. Since
IVF organizes embeddings into clusters of similar vectors, our data
placement technique (i) stores embeddings contiguously, reduc-
ing the address translation overhead from the Flash Translation
Layer (FTL) and, (ii) distributes embeddings across planes to exploit
the available parallelism. To execute the IVF algorithm, REIS uses:
(i) the existing logic within the planes to calculate the similarity
between embeddings and (ii) the SSD controller to identify the
most similar embeddings. Second, to efficiently link embeddings
to documents, REIS employs a new database layout, that (i) stores
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embeddings and document chunks in separate regions, and (ii) cre-
ates connections between the two using the Out-Of-Band (OOB)
area of the NAND Flash array, enabling efficient document retrieval.
Third, we customize the ANNS engine by using binary quantiza-
tion [81, 209, 260] and a hybrid SSD design [36]. Binary quantization
reduces the computational complexity of ANNS, while the hybrid
SSD design combines reliable ISP with high storage density. Specif-
ically, our hybrid SSD design employs (i) SLC, using Enhanced SLC
programming [224] for high-performance and reliable In-Storage
computation on embeddings and (ii) TLC for storing document
chunks at high density.

KeyResults.We evaluate REIS on two SSD configurations based
on a cost- [250] and a performance-oriented [207] SSD design. We
compare its performance and energy efficiency against a high-end
256-core CPU system on two commonly used benchmark datasets
from BEIR [274] and a large-scale public dataset [60], demonstrating
that REIS (i) achieves an average speedup of 13× and up to 112×, and
(ii) improves energy efficiency by an average of 55× and up to 157×.
Compared to a state-of-the-art ISP-based ANNS accelerator [106]
REIS yields an average speedup of 21.4× (7.67×) and 24.2× (9.76×)
at 0.98 (0.90) 𝑅𝑒𝑐𝑎𝑙𝑙@10 across all evaluated datasets for the cost-
and performance-oriented SSDs, respectively. Since REIS does not
introduce any hardware modifications to the storage system, its
adoption for RAG is much easier than prior ISP-based accelerators.

The contributions of this work are listed as follows:

• This is the first work to quantitatively evaluate the large
performance overheads of I/O data movement in the retrieval
stage of the Retrieval-Augmented Generation pipeline.

• We comprehensively analyze the limitations of existing tech-
niques that aim to alleviate the I/O datamovement bottleneck
of the RAG pipeline. We identify two major issues that make
integrating existing ISP-based ANNS accelerators into the
RAG pipeline inefficient and impractical.

• We propose REIS, the first ISP-based retrieval system tai-
lored for RAG. REIS (i) supports efficient document retrieval
by building the correlation between embeddings and doc-
uments within the storage system, (ii) improves retrieval
performance by introducing an ISP-friendly algorithm, and
(iii) improves energy and area efficiency via a customized
in-storage ANNS computation engine using computational
resources already available in a modern storage system.

• We implement REIS based on a cost- and a performance-
oriented SSD design and evaluate its performance and energy
efficiency. Against a 256-core CPU system, REIS provides
an average speedup (energy efficiency improvement) of 13×
(55×). Compared to a state-of-the-art ISP-based ANNS accel-
erator, REIS accelerates RAG retrieval from 7.67× and up to
24.1× depending on (i) the SSD configuration used, and (ii)
the target 𝑅𝑒𝑐𝑎𝑙𝑙@10 value.

2 Background
2.1 Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG) [24, 39, 45, 77, 83, 84, 111,
123, 124, 145, 166, 169, 232, 233, 253, 303, 314, 324, 326] is the process
of incorporating knowledge from an external document database

into LLM inference. To identify the most relevant data, RAG em-
ploys dense retrieval [83, 335], a similarity search operation on
dense vectors representing the semantics of the text, called embed-
dings [20, 158, 160, 164, 202, 211, 292, 293]. To encode this informa-
tion, embeddings feature high dimensionality, often containing 768
to 8192 dimensions [20, 158, 160, 164, 202, 211, 212, 292, 293].

As mentioned in Sec. 1, RAG is a pipeline comprised of three
stages: (i) indexing, (ii) retrieval, and (iii) generation. Indexing cre-
ates data structures such as clusters or graphs, that facilitate faster
semantic similarity search on the embeddings [63, 68, 195, 343]. In
the retrieval step, the RAG system receives a query and encodes it
as an embedding. It then searches the database for the 𝑘 most simi-
lar embeddings, with 𝑘 being a parameter specified by the system.
Once the most similar embeddings are identified, the RAG system
retrieves the corresponding document chunks. In the generation
stage, both the retrieved document chunks and the query are fed
to the LLM in order to perform inference and generate a response.

While the main application for RAG currently is document re-
trieval for question answering [38], researchers have also proposed
multi-modal RAG pipelines [100, 303, 337]. For example, Vision
Transformers [71] enable joint image and text retrieval [121, 234,
338]. Other works [88] combine even more modalities into the same
embedding space such as audio, depth, thermal and movement data.

2.2 Approximate Nearest Neighbor Search
The retrieval stage forms a critical bottleneck in the RAG pipeline, as
generation cannot begin before the relevant document chunks have
been retrieved. The simplest method of identifying the 𝑘 most rele-
vant (top-𝑘) embeddings is Nearest Neighbor Search (NNS), which
entails: (i) calculating the distances (e.g. Euclidean Distance [12, 15])
between the query and all database embeddings and (ii) selecting the
𝑘 database embeddings with the lowest distance. However, a brute-
force approach incurs significant computational overheads due to
(i) the large size of embedding vectors [212] and (ii) the large number
of database embeddings, reaching multiple millions [60, 320] and
even billions [8, 114], resulting in expensive distance computations.
To accelerate the retrieval stage, RAG often performs Approximate
Nearest Neighbor Search (ANNS) [172], trading off some retrieval ac-
curacy for faster similarity search. To quantify this drop in accuracy,
researchers often use the 𝑅𝑒𝑐𝑎𝑙𝑙@𝑘 metric [42, 172, 183, 197, 295],
which is defined the fraction of how many of the 𝑘 most relevant
document chunks have actually been retrieved by ANNS.

Two popular methods for performing ANNS are (i) quantiza-
tion [81, 116, 135, 209, 239] and (ii) algorithm-based techniques [78,
79, 97, 109, 153, 172, 183, 194, 232, 295]. Quantization methods com-
press data, reducing their storage footprint and speeding up com-
putation. For Example, Product Quantization (PQ) [116] partitions
large embedding vectors into smaller sub-vectors and assigns each
sub-vector to a cluster. PQ then concatenates the IDs of the clusters
into a new vector that represents the original vector. Binary Quan-
tization (BQ) compresses each embedding component from its orig-
inal floating-point precision (e.g., FP32) down to a single bit, achiev-
ing a 32× compression ratio. Recent studies [135, 212, 239, 260]
show that BQ accelerates ANNS by up to 40×, with a small impact
on recall when combined with a low-cost rescoring step [239].
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Algorithm-based methods organize data by clustering them or
creating graph-like data structures, which can be searched effi-
ciently without traversing the entire database. For example, the
Inverted-File (IVF) algorithm [63, 328, 343] organizes embeddings
into clusters that are each represented by a centroid. To perform a
search for a given query embedding, first a coarse-grained search
identifies the cluster centroids closest to the query embedding. Sec-
ond, a fine-grained search on all embeddings within these clusters
(approximately) yields the closest neighbors to the query embed-
dings. Other algorithms also exist, such as: (i) Hierarchically Nav-
igable Small World (HNSW) [195], which constructs a hierarchy
of graphs, where higher and lower levels of the hierarchy direct
the search in a coarse- and fine-grained manner, respectively, and
(ii) Locality-Sensitive Hashing (LSH) [68], which hashes similar
embeddings into the same bucket with high probability.

2.3 SSDs & NAND Flash Memory
Figure 1 presents an overview of a modern SSD architecture based
on NAND flash memory. An SSD comprises of an SSD controller,
DRAM and multiple NAND flash chips. The SSD controller ( 1 ) [3,
25, 27–29, 32, 270] handles the I/O requests from the host, and per-
forms maintenance tasks such as garbage collection (e.g., [3, 26,
27, 29, 53, 130, 161, 259, 270, 307, 316]) and wear-leveling (e.g., [3,
180, 262, 340]). The SSD controller contains multiple embedded mi-
croprocessors ( 2 ) [14] that execute the firmware called the Flash
Translation Layer (FTL) [95, 180, 262, 270, 340]. The SSD controller
stores metadata (e.g., logical-to-physical page mapping table [95])
and frequently-accessed pages in a DRAM ( 3 ) internal to the SSD.
The DRAM size is typically 0.1% of the storage capacity (e.g., 1GB
DRAM for each TB of storage capacity [251]). The SSD controller
translates the logical page address of each I/O request to a physical
page address, and issues commands to the flash chips [3, 26, 214] via
the flash controllers. An SSD consists of multiple flash controllers
( 4 ) [141, 143, 203, 205, 305], which are embedded processors that
interface the SSD controller with flash chips ( 5 ). Each flash con-
troller is responsible for communication with multiple flash chips
sharing the same channel. The flash controller selects a flash chip
for read/write operations and initiates command and data transfers.
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Figure 1: NAND Flash Memory Architecture

Each NAND flash chip is comprised of multiple flash dies ( 6 ),
which operate independently of each other. Each die consists of
2–16 planes ( 7 ) [51, 147, 152] , that can perform read or write oper-
ations in parallel. Planes are further divided into groups of blocks,
with each block consisting of hundreds of pages ( 8 ). A flash page,

typically sized at 16KB, consists of thousands of NAND flash cells
placed horizontally. A flash page typically stores user data, and
consists of a dedicated out-of-band area ( 9 ) [107, 267, 321] (e.g.,
64-256 bytes) to store metadata related to error correction codes
and logical-to-physical mapping. NAND flash memory executes
read and program operations at the page granularity, and performs
erase operations at block granularity [25, 30, 32, 62, 184, 203, 224].
A flash die employs a page buffer which acts as an intermediate
buffer during read and write operations. The page buffer consists
of multiple buffers [101, 137, 165, 189, 204, 206, 246, 261, 284] (e.g.,
three buffers if each flash cell stores 3 bits) to store the bits in a flash
page. The sensing buffer ( 10 ) is the main buffer that temporarily
stores flash page data during the read operation. The cache buffer
( 11 ) improves read performance by enabling data transfer from
the flash chip to the flash controller in parallel with the next read
operation. Data buffers ( 12 ) are typically used when (1) program-
ming multiple bits per cell, and (2) reading a single bit from a flash
cell that stores multiple bits.

Based on the number of bits stored in a flash cell, a flash cell can
be classified as a single-level cell (SLC; 1 bit) [49], multi-level cell
(MLC; 2 bits) [163], triple-level cell (TLC; 3 bits) [51, 147, 190], or
quad-level cell (QLC; 4 bits) [50]. While the SSD capacity increases
as each flash cell stores more bits, the increased value density leads
to higher latency and lower endurance [26, 27, 29, 31, 203]. To enable
reliable writes to flash cells, SSD manufacturers use Incremental
Step Pulse/Erasure Programming (ISPP/ISPE) techniques [117, 266].
ISPP/ISPE technique iterates through multiple steps of gradually
inserting/ejecting electrons into/from the flash cell until the de-
sired charge level is reached. The peripheral circuitry ( 13 ) in each
flash die includes an on-chip digital bit counter, pass/fail checking
logic and XOR logic between the latches. The digital bit counter
and pass/fail checking logic [48, 52, 203] are used to test the state
of the cells and guide the ISPP/ISPE process. To further increase
reliability, the XOR logic between the latches is used for on-chip
data randomization [33, 106, 139, 188, 224].

2.4 In-Storage Processing
In-storage processing (ISP) is a computation paradigm that enables
processing of data within the storage device. ISP techniques pro-
vide significant performance and energy efficiency benefits over
conventional systems for data-intensive applications, such as ge-
nomics [85, 198], neural networks [112, 142, 215, 300], databases [1,
35, 89, 93, 96, 98, 125, 148, 173, 174, 219, 238, 255–257, 306] and
graph analytics [19, 21, 82, 98, 127, 162, 171, 227, 257, 283]. Un-
like conventional systems, ISP techniques leverage the high in-
ternal bandwidth of the storage system and reduce data move-
ment across the memory hierarchy. ISP techniques perform com-
putation by (1) leveraging the embedded general-purpose cores
(e.g., [2, 17, 22, 94, 131, 133, 136, 146, 151, 167, 179, 199, 254, 280–
282, 291, 298]) already present in the SSDs, or (2) placing hardware
accelerators (e.g., [7, 46, 69, 118, 127–129, 149, 162, 176, 177, 193,
226, 243, 244, 283]) near the flash chips.

Prior works (e.g., [2, 17, 22, 94, 131, 133, 136, 146, 151, 167, 179,
199, 254, 280–282, 291, 298]) propose techniques to utilize the em-
bedded cores in the SSD for computations such as filtering, aggre-
gation, and encryption. These general-purpose embedded cores
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are beneficial only for simple computations because the primary
responsibility of these cores is to execute the FTL and handle I/O
requests. A large body of prior work (e.g., [7, 46, 69, 118, 127–
129, 149, 162, 176, 177, 193, 226, 243, 244, 283]) proposes to em-
bed hardware accelerators near the flash packages to accelerate
application-specific computations. These hardware accelerators pro-
vide significant performance benefits, but add area and power over-
heads to the SSD. Several prior works [106, 144, 178, 192, 299, 310]
identify the substantial I/O traffic (up to 70-75% of the end-to-
end search latency [178, 299]) in billion-scale ANNS applications
[11, 115, 126, 264, 265] and propose offloading ANNS to the storage
system. These ISP-based ANNS accelerators can largely alleviate the
I/O overhead, improving performance over conventional systems.

3 Motivation
A key limitation of modern LLMs is their inability to generate
responses with information beyond their training data. To solve this
issue, modern LLM application frameworks [37, 182, 228] support
Retrieval-Augmented Generation, combining the text generation
capabilities of LLMs [73, 74, 122, 181, 272, 331] with an external
knowledge database, as described in Sec. 2.1. Beyond information
retrieval, RAG also enables long-tail knowledgememorization [196],
alleviating the need for large models with billions of parameters
[111], and mitigating the risk of revealing training data [326].

While current research on RAG [39, 84, 169, 324, 334] mainly
focuses on further enhancing these capabilities, to our knowledge,
no existing works attempt to characterize and address the ineffi-
ciencies found in RAG pipelines. In this section, we analyze the
performance bottlenecks of RAG and discuss the issues existing
systems face when tackling these bottlenecks.

3.1 Performance Bottleneck of RAG Pipelines
As described in Sec. 2.1, RAG pipelines consist of one offline stage,
indexing, and two online stages, i.e., retrieval and generation. The
online stages of RAG entail (i) encoding the query into an embed-
ding vector, (ii) performing dense retrieval for relevant documents,
and (iii) using the retrieved documents and the query to generate
a response. For these steps, respectively, the RAG system has to
load (i) the embedding model, (ii) the RAG database and (iii) the
generation model (i.e., the LLM) from the storage system. With the
aim of identifying potential inefficiencies, we measure the latency
contributions of the above stages to the RAG pipeline.
Methodology. For encoding and generation we chose two popular
open-source models, all-roberta-large-v1 [240, 241] and Llama 3.2
1B [73], respectively. We use FAISS [72] flat indexes to link embed-
dings to document chunks. We evaluate RAG performance on two
datasets, HotpotQA [320] with 5.3 million entries and the English
subset of aWikipedia-based dataset (wiki_en) [60], with 41.5 million
entries. For each query, we retrieve the 10 most relevant document
chunks (top-10 retrieval). Our RAG system consists of a high-end
NVIDIA A100 GPU [55] for embedding and generation and two
high-end Intel Xeon Gold 5118 CPUs [110], with a Samsung PM9A3
PCIe 4.0 SSD [250] for retrieval. The system is also equipped with
1.5TB of DDR4 memory [208].
Results. Figure 2 shows the contribution of different operations
in the RAG pipeline to end-to-end execution time. We make two

84%
49%

10%
46%

0% 20% 40% 60% 80% 100%

wiki_en
HotpotQA

Fraction of Execution Time

Embedding Model Loading Encoding
Dataset Loading Search
Generation Model Loading Generation

172.82 s

37.31 s

Figure 2: Latency breakdown for a typical RAGpipeline. Total
time is displayed next to each bar.

key observations. First, dataset loading accounts for a substantial
portion of the pipeline’s overall latency, reaching 84% for wiki_en.
Second, the latency attributed to dataset loading increases with
dataset size. For example, as the dataset size grows by approximately
8× from HotpotQA to wiki_en, the percentage of latency attributed
to dataset loading increases by around 1.7×. We conclude that
dataset loading during the retrieval stage contributes significant
latency to the RAG pipeline and becomes a performance bottleneck,
especially for large datasets. We refer to this bottleneck as the I/O
data movement bottleneck in RAG pipelines.

67.3%
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Figure 3: Latency breakdown for a RAGpipeline using Binary
Quantization (BQ). Total time is displayed next to each bar.

As an important caveat, we acknowledge that the contribution
of I/O data movement to end-to-end RAG performance largely de-
pends on encoding and generation model sizes. Larger models
(e.g., Llama 3.2 90B [73]) increase generation latency, due to the
increased computation cost, potentially reducing the impact of I/O
data movement in the RAG retrieval stage. Even in this case, I/O
data movement can still bottleneck the RAG pipeline for two key
reasons. First, LLM acceleration techniques [6, 65, 66, 104, 155, 237,
258, 263, 289, 323] and more powerful hardware [217, 225, 269, 278]
can substantially reduce generation latency, exacerbating the I/O
bottleneck of the RAG pipeline. For instance, tensor parallelism
[155, 263, 289] enables efficient LLM generation on multi-node
GPU systems [54, 217, 278, 279], significantly improving perfor-
mance. Second, the increasingly popular Mixture-of-Experts (MoE)
LLM architecture [122, 181, 339] can reduce computational cost
and increase generation performance of large LLMs. As a result,
we anticipate that the retrieval, and not the generation stage, will
remain a significant bottleneck in future RAG pipelines.

3.2 Limitations of Existing RAG Optimizations
We discuss the limitations of existing optimizations when trying to
alleviate the I/O data movement bottleneck in RAG pipelines.
Batching. One possible solution is to batch multiple queries before
performing retrieval to amortize dataset loading overheads. How-
ever, the effectiveness of this technique remains limited in practice
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as queries from different domains (e.g., medical, law, finance) must
be served from different, domain-specific [105, 156, 185, 287, 302,
304, 309, 322, 325, 329, 336] or multi-modal datasets [16, 87, 90, 201,
210, 223, 311, 315, 344] to enhance generation quality.
Quantization. Quantization techniques, such as Product Quantiza-
tion (PQ) or Binary Quantization (BQ), can reduce the memory foot-
print of RAG applications. Recent studies [135, 209, 212, 239, 260]
demonstrate that BQ provides a good trade-off between storage
footprint and recall. To further evaluate this trade-off, we repeat
the previous experiment using BQ for the embeddings. As shown in
Fig 3, while BQ reduces the I/O data movement overhead by 17-29%
for both datasets, dataset loading remains the bottleneck for the
larger wiki_en dataset, amounting to 67% of the total latency.

While quantization significantly reduces the size of embeddings,
this is not possible for the document chunks, which amount to 9GB
of the total 14GB transferred for thewiki_en dataset (after BQ on the
embeddings). Therefore, we conclude that quantization techniques
are useful in reducing the I/O data movement bottleneck, but they
cannot eliminate it.
Algorithmic Optimization. ANNS algorithms often improve re-
trieval performance by using sophisticated indexes [63, 68, 195, 343],
which reduces search time. The data structures used to store these
indexes are often larger than the flat indexes used for simple brute-
force approaches, potentially exacerbating the I/O data movement
bottleneck. Hybrid ANNS algorithms [41, 115] attempt to overcome
the I/O data movement bottleneck by storing the index in SSDs and
loading parts of it in memory for distance computations on demand.
SPANN [41] provides the state-of-the-art performance-accuracy
tradeoff among hybrid ANNS solutions, enabling small amounts of
DRAM (e.g. 32GB) to accelerate searches in TB-sized SSD-resident
datasets. Specifically, SPANN groups embeddings into clusters and
stores them in the SSD, only keeping cluster centroids in memory.
We conduct an experimental study on SPANN and find two major
limitations of this type of solution. First, we observe that achiev-
ing a reasonable recall-accuracy tradeoff requires selecting a large
number of centroids, increasing memory footprint and lowering
performance. For example, reaching 0.92 𝑅𝑒𝑐𝑎𝑙𝑙@10 in HotpotQA
requires storing 24% of all embeddings as centroids in memory,
yielding only a 22% speedup over exhaustive search. This obser-
vation also matches with the original study of this algorithm [41].
Second, hybrid ANNS algorithms such as SPANN only optimize
storage and retrieval for embeddings and not for the document
chunks of a vector database. We conclude that hybrid ANNS algo-
rithms also do not fundamentally alleviate the I/O data movement
bottleneck.
Memory Expansion. As our analysis in Sec. 3.1 shows, data move-
ment between storage and the host contributes significant latency
to the RAG retrieval stage. Memory expansion techniques such as
those enabled by Compute Express Link (CXL) [4, 67, 91, 113, 168]
enable very large memory capacities that could theoretically keep
RAG datasets resident in memory. However, such approaches suffer
from two key drawbacks. First, main memory is significantly (i.e.,
more than an order of magnitude) more expensive per GB than
flash storage, at approximately 3.10 [248] vs 0.1 [250] USD per GB,
respectively. Second, such approaches are unsustainable as (i) con-
tinuously increasing dataset sizes, and (ii) the growing number of
datasets for domain-specific applications [105, 156, 185, 287, 302,

304, 309, 322, 325, 329, 336] eventually overwhelm the capacity of
such systems.
ANNS Acceleration Inside the Storage. Prior works propose
In-Storage processing (ISP) techniques [178, 192, 299] to allevi-
ate the I/O data movement bottleneck in the ANNS kernel. Al-
though ANNS forms a key component of RAG, existing ISP-based
ANNS accelerators cannot entirely eliminate the I/O data move-
ment bottleneck for three key reasons. First, prior ANNS accelera-
tion works [178, 192, 299] employ graph-based algorithms such as
HNSW [195] and DiskANN [115], using graph-traversal to identify
similar neighbors. During graph traversal, the algorithm performs
an analysis on the current vertex to identify the next vertex. As
a result, graph traversal induces irregular access patterns [75, 76]
that underutilize the internal bandwidth of the SSD due to costly
channel and NAND Flash chip conflicts [143, 214]. Second, prior
ISP-based ANNS accelerators [106, 178, 192, 299] focus primarily on
accelerating the search operation without providing efficient sup-
port for retrieving the associated documents. However, as shown
in Figs. 2 and 3, the dataset loading step contributes significant
latency to RAG retrieval. Third, works such as [106, 192] introduce
significant overheads storage and hardware overheads. For exam-
ple, ICE [106] in order to perform computations inside NAND flash
dies, stores data in a format that can tolerate errors without error
correction. This format incurs a 32× (8×) storage overhead for data
in 8-bit (4-bit) precision, resulting in high storage overheads. An-
other example is DeepStore [192], which incurs significant area and
power overheads by introducing a systolic array-based architecture
in the storage system to perform query matching by executing Deep
Neural Networks. Overall, these limitations hinder the adoption on
ISP-based acceleration techniques in RAG pipelines.

3.3 Our Goal
Based on our observations and analyses in Sec. 3.1 and 3.2, we
conclude that (1) the I/O data movement of RAG significantly bot-
tlenecks its performance, and (2) none of the prior techniques ef-
fectively eliminate this bottleneck in the RAG pipeline. Our goal
is to fundamentally alleviate the I/O data movement bottleneck in
RAG through an ISP design that does not introduce modifications
to the hardware of the storage system.

4 REIS
REIS is an In-Storage Processing (ISP)-based retrieval system that
alleviates the I/O data movement bottleneck in the RAG pipeline.
REIS works by receiving query embeddings from the host, query-
ing the database inside the storage, and then returning relevant
document chunks, greatly reducing communication between host
and storage system.

ISP introduces two significant design challenges. First, the avail-
able embedded cores are limited in terms of both performance and
functionality (e.g., lack of floating point support [13]). Second, the
flash channel bandwidth is limited compared to the total NAND
flash read bandwidth. As described in Sec. 4.3, REIS uses the exist-
ing hardware inside the NAND flash planes to alleviate the load on
the embedded cores, which, however, introduces new limitations:
(I) The logic inside flash dies only supports simple bitwise and bit-
counting operations. (II) NAND flash reads are unreliable, requiring
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the use of error correction codes (ECC) [31] to achieve robust op-
eration. Since ECC is typically performed by the controller [14],
performing computation inside flash dies requires fundamentally
different error mitigation mechanisms.

In this section, we explain the design decisions behind REIS,
which alleviate the aforementioned issues. Figure 4 presents an
overview of the system and the key mechanisms it consists of. First,
REIS employs a vector database layout that links embeddings with
documents in order to enable efficient document retrieval (Sec. 4.1).
Second, REIS introduces support for the Inverted File (IVF) algo-
rithm in ISP systems, improving the end-to-end retrieval perfor-
mance (Sec. 4.2.1). Third, an in-storage ANNS engine efficiently
executes the ANNS kernel (Sec. 4.3).
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4.1 Database Layout
REIS introduces a vector database layout that distributes and links
embeddings and documents in order to maximize the data access
parallelism for in-storage computation. The database layout (i)
distributes the vector database into an index region and a document
region, (ii) creates low-overhead links between each embedding and
its associated document chunk, and (iii) provides coarse-grained
access to each dataset to avoid frequent FTL invocations.

4.1.1 Database Distribution. During the retrieval stage of RAG,
the ANNS kernel performs distance calculations on the database
embeddings to select the top-𝑘 most similar documents. As a result,
accesses to embeddings are far more frequent than accesses to
documents. Based on this observation, we distribute the database in
three ways to improve the efficiency of accessing embeddings. First,
we map embeddings and documents to two separate regions of the
NAND flash array, the embedding ( 1 in Fig. 4) and the document
( 2 ) regions, respectively. Second, we employ Parallelism-First Page
Allocation [332] to evenly distribute embeddings across all planes
of the storage system. Third, we assign each document chunk to
an individual 4KB sub-page or a 16KB page, adapting to different
document chunking granularities [5, 20, 158, 175, 211, 245, 293].

4.1.2 Hybrid SSD design. Modern SSDs employ Triple-Level Cells
(TLC) which rely on ECC to combine high density with data in-
tegrity, requiring data transfers to the embedded cores of the SSD
controller for error correction. As will be shown in Sec. 4.3, REIS per-
forms operations within the planes and dies of the storage system.

Thus, performing ECC on the controller would create significant
data movement overheads, negating potential speedups. In order
to: (i) eliminate such overheads and (ii) allow error-free in-plane
embedding distance calculation without ECC, REIS employs Hy-
bridSSD [247, 286, 308, 332] techniques in the ANNS engine. Specif-
ically, we employ soft partitioning to create (i) a robust, non-ECC
Single Level Cell (SLC) partition for storing binary embeddings, and
(ii) a typical, high-density TLC partition that stores the database’s
document chunks and embeddings that are not processed within
the planes (e.g INT8 embeddings for reranking). To further improve
the robustness of the SLC partition, REIS makes use of the Enhanced
SLC-mode Programming (ESP) [224], which maximizes the margin
between the voltage ranges of the values in SLC, achieving zero
BER without ECC. As an added benefit, SLC programming slightly
enhances RAG performance due to decreased read latency of SLC
compared to TLC [247].

4.1.3 Embedding-Document Linkage. While the database layout of
Sec. 4.1.1 can increase performance by separating the frequently
accessed embeddings from the less frequently accessed document
chunks, performing document retrieval requires a connection be-
tween the two. To achieve this, REIS employs a low-cost linkage
mechanism within the storage system that associates each embed-
ding with the address of its corresponding document chunk.

Modern NAND flash memory provisions some storage space for
ECC bits known as the Out-Of-Band (OOB) area (e.g., 2208 spare
bytes for each 16KB page [230, 236]). During each page read, the
page buffer loads OOB data together with the page. We re-purpose
a small portion of the OOB area to store the address of the docu-
ment chunk that is associated with each embedding ( 3 in Fig. 4).
For example, assuming a dataset where (i) each embedding and
document chunk occupies 4KB (i.e., a sub-page [159]) and (ii) each
document chunk requires a 4-byte address, linking embeddings to
documents requires 16 spare bytes (or 0.7% of the OOB area) for
each page. This approach ensures that whenever an embedding is
loaded to the page buffer, the address of its associated document
chunk is also loaded. Therefore, when the storage system conducts
distance computation for a page of embeddings using the mecha-
nisms proposed in Sec. 4.3, the addresses of associated document
chunks are available in the page buffer for document identifica-
tion and retrieval. Our proposed mechanism eliminates the need to
maintain a specialized data structure for document retrieval with
minimal space overhead to the storage system.

4.1.4 Coarse-Grained Access. With the aim of (i) distinguishing be-
tween different RAG datasets in the storage system and (ii) reducing
the frequent address translation overheads when accessing embed-
dings, REIS introduces a coarse-grained access scheme. Specifically,
REIS stores an address information entry for each region of the
database in the internal DRAM. Each entry includes an integer
index as the distinct signature of a database and the addresses of
the first and last entries of the embedding and document regions.
The coarse-grained access scheme enables database management in
two ways. First, during database deployment, the storage system re-
serves two non-overlapped and consecutive regions and creates the
address entries based on the size of a database before deploying the
database to the storage system. In this way, we ensure the isolation
of the database from other user data or databases. Second, during a
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database search operation, the storage system finds the starting em-
bedding address of a database through the address entry to start the
retrieval process. For each upcoming page read, the SSD controller
infers the next address to read by incrementing the current address,
instead of frequently invoking the address translation using the
L2P mapping table. To ensure data integrity, REIS retains page-level
FTL metadata, which contain essential information for operations
such as refresh and wear-leveling. This metadata is used for: (i)
writes during database initialization and (ii) periodic maintenance
operations such as data refresh, which however are rare (e.g., once
a year [207]). After these operations, FTL metadata is flushed from
the SSD’s DRAM.

Coarse-grained access eliminates the need to maintain the page-
level FTL for both regions of the database after deployment, conserv-
ing the valuable space of the internal DRAM for other operations
(see Sec. 4.3). For example, for a 1TB vector database that originally
demands 1GB for page-level FTL [99, 296, 341], the maintenance
cost for addressing is reduced to 21 bytes. Since REIS is designed
with the aim of serving potentially many different RAG databases,
we store the necessary information (i.e., the integer index of the
database, the entries of the first/last entries in the embedding and
document regions) in a small array in the SSD Controller’s DRAM.
This structure is called R-DB ( A in Fig. 4) and serves as a record
of deployed databases. A potential downside of coarse-grained ac-
cess is that it requires the existence of a large contiguous block of
storage, which may necessitate defragmentation operations during
database deployment. However, this is an initial upfront overhead
that can be amortized over time.

4.2 ISP-Friendly ANNS Algorithms
Apart from graph-based ANNS algorithms used by prior works [115,
195, 299], two other types of mainstream ANNS algorithms exist:
cluster-based (e.g., Inverted File (IVF) [63, 343]) and hash-based
algorithms (e.g., Locality Sensitive Hashing (LSH) [68]). With the
aim of selecting the most suitable algorithms for our system, we per-
form a qualitative comparison, measuring throughput and recall on
a CPU-based system (described in Table 3). Specifically, we compare
the performance of IVF, HNSW, and LSH on thewiki_en dataset [61]
using the Cohere [239] embedding model and the FAISS [72] library.
We measure throughput in Queries per Second (QPS) and normalize
it to that of exhaustive search. We first evaluate the performance of
different implementations without quantization. Figure 5 demon-
strates that: (i) HNSW is the best performing base (i.e., without
quantization) algorithm, (ii) both HNSW and IVF provide up to 0.99
recall, and (iii) LSH is the worst performing algorithm, with lower
performance than exhaustive search (result) for recall values above
0.8 (1.2× slower for Recall@10=0.9).

Since ISP hardware has limited capabilities (e.g., lack of floating-
point support [13]), ISP-based ANNS requires quantization. For this
reason, in Fig. 5 we also analyze the performance of IVF and HNSW
when using Binary Quantization (BQ) and Product Quantization
(PQ), combined with reranking [239]. We make four key observa-
tions: (i) IVF recall remains high even with BQ (PQ) at 0.97 (0.96),
(ii) PQ performs worse than BQ and even floating-point IVF, (iii)
IVF throughput increases significantly with BQ, and (iv) HNSW
throughput remains constant with BQ, while still outperforming
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Figure 5: Comparison of ANNS algorithms in terms of
throughput and recall running on CPU. For IVF, nlist de-
notes the number of clusters for a dataset. For HNSW, M
denotes the number of neighbors for each vertex.

IVF by approximately 3×. While these observations suggest that
both HNSW and IVF are compelling options for ANNS-based RAG,
graph-based algorithms (e.g. HNSW) feature irregular access pat-
terns [75, 76] that underutilize the internal bandwidth of the SSD,
making them unsuitable for ISP. In contrast, IVF performs searches
in contiguous data, exhibiting streaming access patterns. We thus
select IVF as our algorithm of choice, and perform modifications to
our database layout that support its execution.

4.2.1 IVF-tailored Database Layout. In order to accelerate retrieval,
REIS employs ANNS via the Inverted File (IVF) algorithm. As will
be shown in Sec. 4.3, REIS uses IVF with quantization and rerank-
ing, which requires storing data in both binary and INT8 precision.
To efficiently support IVF with these optimizations, we modify
the database layout of Sec. 4.1 in three ways. First, we divide the
embedding region into three sub-regions, one for storing cluster
centroids, and two other regions for storing embeddings in binary
and INT8 precision, respectively. Second, to facilitate IVF search
operations, we create an array which serves as a record of all clus-
ters. Each element of the array corresponds to an IVF cluster and
contains: (i) the address of the cluster centroid, (ii) the index of
the first and the last embedding within the cluster and (iii) a 8-
bit tag associated with the cluster. We name this array R-IVF ( B )
and store it in the SSD’s DRAM, resulting in a memory footprint
of 𝑁𝑢𝑚𝑏𝑒𝑟_𝑜 𝑓_𝑒𝑛𝑡𝑟𝑖𝑒𝑠 × 15𝐵. Third, we extend the Embedding-
Document Linkage of Sec. 4.1.3 in two distinct ways. (I) In order to
link binary embeddings to their INT8 counterparts for reranking,
apart from the document address corresponding to each embedding,
we also store the address of the INT8 embedding (RADR) in the
OOB region. (II) For reasons that will become apparent in Sec. 4.3,
we store the 8-bit tag of the cluster in the OOB area of the page
that contains the cluster centroid.

Supporting IVF also requires allocating data structure in the
SSD Controller’s DRAM. Specifically, during IVF operations REIS
maintains lists containing (i) clusters and (ii) embedding vectors as
well as their distances from the query embedding. These structures
are called Temporal Top Lists (TTL) ( C in Fig. 4) and as will be
shown in Sec. 4.3 are employed in our In-Storage ANNS Engine.

4.3 In-Storage ANNS Engine
Prior ISP-based ANNS accelerators [178, 192, 299] commonly in-
tegrate Multiple-Accumulate (MAC) units to compute Euclidean
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distance [12, 15] for ANNS. Introducing such changes to the storage
system creates (i) significant power and area overheads, and (ii)
adoption issues due to the intrusive nature of such modifications.
As explained in Sec. 2.2, there exist opportunities to reduce com-
putational overhead of ANNS, while retaining accuracy. Recent
studies [135, 209, 212, 239, 260] have shown that Binary Quantiza-
tion (BQ) can achieve a recall of 96%, due to the large dimensionality
of text embeddings [20, 158, 160, 164, 202, 211, 212, 292, 293]. With
REIS, our goal is to avoid the power and area overheads of prior
designs. To this end, we design an In-Storage ANNS engine based
on BQ which (i) utilizes only existing components within the SSD
system to perform retrieval, (ii) exploits the plane-level, die-level,
and channel-level parallelism of the storage system, and (iii) incor-
porates two major optimizations, distance filtering and pipelining.

4.3.1 Search Process. The search process for the Inverted File algo-
rithm (IVF) [63, 343] consists of two steps, a coarse- and fine-grained
search. First, in the coarse-grained search, REIS searches through all
cluster centroids to identify those closest to the query embedding.
To achieve this, REIS starts by reading and calculating the distance
for all embeddings stored in one page. For each embedding, it then
creates an entry consisting of the distance value (DIST), embed-
ding (EMB), embedding address (EADR), and the associated tag
(TAG). It sends these entries to a table, the Temporal Top List for
Centroids (TTL-C), which resides in the SSD’s DRAM. After filling
the TTL-C for each page read, the embedded cores of the SSD con-
troller execute a quickselect kernel [191] on the distance numbers,
identifying the entries that correspond to the N nearest clusters
to the query. Quickselect has an average time complexity of 𝑂 (𝑁 )
and finds the k-th smallest element in an unordered array, simulta-
neously selecting the 𝑘 smallest elements in the process without
sorting them. At the same time, the storage system reads the next
page of centroids and conducts distance computations to hide the
latency of selection. Each iteration consists of (i) a page read, (ii)
distance computations, and (iii) embedding selection, updating the
TTL-C with the new closest clusters. After the last iteration, REIS
selects the nearest clusters according to the finalized TTL-C. In
the second step, REIS conducts a fine-grained search inside the
clusters identified in the first step. The fine-grained search has two
major differences compared to the coarse-grained search. (i) Instead
of forming the TTL entry using TAG, for the fine-grained search,
each TTL entry consists of DIST, EMB, RADR, and the address
of the associated document (DADR). We name the table for the
fine-grained search Temporal Top List for Embeddings (TTL-E). (ii)
After the last iteration of selecting the k nearest embeddings to
the query, the storage system performs quicksort [102] to obtain a
distance-ordered top-𝑘 list for the query.

4.3.2 Retrieval architecture and execution. Document retrieval is
performed by the ANNS engine, which (i) receives the query embed-
ding from the host system, (ii) computes the distance between the
query embedding and database embeddings, and returns the top-k
results. Fig. 6 breaks down REIS’s execution flow in nine steps.

The execution flow begins with the reception of a new query
by the storage system, which is placed in the SSD’s DRAM and
which triggers the execution of the ANNS kernel (steps 2 - 8 ).
The storage system first transfers the query embedding from the
DRAM to the data buffer in each NAND Flash plane 1 and then
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Figure 6: REIS’s In-Storage ANNS Engine

writes multiple copies of the data, filling the whole Cache Latch
(CL). These copies are aligned to the database embeddings in order
to enable bitwise operations, as will be described in step 3 . We
refer to this step as Input Broadcasting (IBC). After IBC each CL
holds N duplicates, where N = Page_Size / Embedding_Size. In step
2 , the storage system issues a page read command to each plane,
loading a page of database embeddings to the Sensing Latch (SL).
By performing an XOR operation between the CL (which stores
the query embedding) and the SL (which now stores the database
embeddings), and storing the result in the Data Latch (DL) 3 , each
plane calculates the bitwise difference of the query and the database
embeddings. Next, in step 4 , we employ the fail-bit counter [48, 52,
203] within the peripheral logic to measure the number of logical
ones in the DL, which corresponds to the distance between the
query and the database embeddings.

The data that is transferred out from the flash dies to the SSD
Controller’s DRAM changes depending on whether the steps 1 - 4
are executed during coarse- or the fine-grained search. For coarse-
grained search, the ANNS engine transfers the (i) the embedding
vector (EMB), (ii) its calculated distance (DIST), and (iii) the tag of
the cluster that this embedding belongs to, forming a single entry.
For fine-grained search, instead of transferring the tag of the cluster,
the ANNS engine transfers (iv) the addresses of the INT8 version
of the embeddings (RADR), and (v) the correlated document chunk
address (DADR). Steps 2 - 4 are repeated until the whole database
is searched. The SSD controller retrieves distance numbers from
the TTL and performs quickselect [103] using the embedded core
6 , selecting the 10𝑘 embeddings closest to the query. In step 7 ,
the embedded core of the SSD controller executes the reranking
kernel [135, 239, 312]. Reranking performs a costlier but more ac-
curate search on the subset of data elements that are selected by
ANNS. Rerankers usually (i) employ cross-encoder models that
accurately calculate the similarity between queries and document
chunks [40, 216], or (ii) recalculate distances with higher precision
(e.g., INT8) [260]. REIS uses the second approach: ANNS is per-
formed using Binary Quantization, while reranking is performed
using INT8 embeddings. For reranking, the embedded core first
fetches the top-10𝑘 embeddings from the INT8 embedding region
using the RADR. It then recalculates the distances in INT8 precision
and sorts them using quicksort [102] 8 to finally select the top-𝑘
embeddings, which ends the search process. Once the ANNS search
is completed, the ANNS engine executes document identification to
find relevant document chunks according to the DADR of the top-k
results and transfers them to the host system 9 for generation.
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Exploiting SSD Parallelism. As described in Sec. 4.3.2, REIS uses
the buffers and the peripheral logic within the planes and the dies of
the storage system in order to perform distance computations. This
approach allows multiple simultaneous XOR and bit-counting op-
erations across planes and dies, exploiting the available parallelism
within the storage system. Once these computations have been
performed, the flash channels of the storage system collectively
provide massive internal bandwidth (e.g., 9.6 GB/s bandwidth for
an 8-channel system with 1.2 GB/s bandwidth per channel [47]),
which can efficiently transfer entries from the flash dies to the SSD
controller’s DRAM by leveraging the channel-level parallelism.
Fine-grained Embedding Access. To ensure fine-grained access
to each embedding, REIS introducesMini-Pages for addressing. REIS
composes aMini-Page address by appending an offset to the original
physical page address, filling each page with as many embeddings
as possible (e.g., 128 binary 1024-dimension embeddings per 16KB
page, leading to a 7-bit offset for the Mini-Page address). During
execution of the ANNS engine, REIS performs retrieval using the
Mini-Page address as the embedding address (EADR) for each entry
in the TTL.

4.3.3 Distance Filtering. We experimentally find that, for each
query, a significant fraction of document chunks within the data-
base are irrelevant (i.e., the distance between their embeddings and
the query embedding is very large). For example, various retrieval
tasks, such as fact-checking [276], retrieve only 1.2-3.0 relevant doc-
ument chunks per query on average from the BEIR datasets [274].
To avoid forwarding irrelevant data to the SSD controller, we em-
ploy distance filtering, which discards database embeddings when
their distance from the query embedding exceeds a certain thresh-
old. By discarding highly irrelevant queries, distance filtering (i)
conserves SSD channel bandwidth, and (ii) reduces the number of
entries that the SSD controller has to select and sort.

We introduce a modification to step 4 with which we apply dis-
tance filtering to the ANNS kernel. To determine suitable thresholds,
we perform filtering experiments on 4 BEIR [59] datasets targeting
different retrieval tasks: HotpotQA [320], NQ [154], FEVER [276],
and Quora [64]. We make two observations: First, for HotpotQA
we can filter out 99% of the documents and still retrieve the k=10
most relevant ones for each query. Second, the choice of filtering
threshold only weakly depends on the dataset size. For 𝑘 = 10, the
threshold would only be 1.6% higher for the biggest dataset, FEVER
compared to the smallest, Quora. We conclude that (i) distance fil-
tering significantly reduces the number of candidate embeddings
and thus computation, and (ii) it is possible to employ one filtering
threshold for effectively filtering datasets with different sizes.

We implement distance filtering using the comparator logic
within the flash dies (i.e., the pass/fail checker) [48, 52, 203], which
compares distance numbers with a pre-defined threshold. Each
embedding whose distance (DIST) value is below the threshold is
transferred to the SSD’s DRAM for further processing.

4.3.4 Pipelining. To further accelerate RAG retrieval, REIS exploits
three pipelining opportunities within the storage system. First,
REIS leverages the widely implemented Read Page Cache Sequential
mode [203], inside the flash chips, to overlap operations between
two iterations of steps 2 - 4 . Specifically, during step 4 , after the PL
transfers its data to the DL for readout, it can immediately read the

next page. Second, REIS overlaps distance calculation on the NAND
Flash dies with kernel execution on the embedded cores. According
to our evaluation, a single core can efficiently run Quicksort and
reranking without stalling the pipeline. Therefore, REIS only uses
one core for Quicksort and reranking, while the other cores (e.g.,
3 out of 4 [249, 251]) are still available for regular SSD operations.
Third, during IBC (see Sec. 4.3.2), REIS enables all planes per die
to receive the input query from the die I/O simultaneously, an
optimization that we name Multi-Plane IBC (MPIBC). This reduces
the IBC latency by a factor equivalent to the number of planes
per die. We assume the plane selection is handled by a dedicated
Multiplexer logic within the die periphery. Therefore, enabling
MPIBC requires raising the select signal for all planes together so
that they can receive the input query embedding concurrently.

4.4 System Integration of REIS
To enable communication with the host, REIS introduces an Ap-
plication Programming Interface (API) that defines RAG-specific
extensions to the NVM command set [218]. Similarly, to support
the operations described in Sec. 4.3, REIS extends the NAND flash
command set with commands that enable communication between
the controller and the flash dies.

4.4.1 Application Programming Interface. REIS specifies a high-
level API for the host system to perform the indexing and the
retrieval stage of the RAG workflow. To achieve this, we extend
the NVM command set [218] with custom REIS operations. The
specification provides a range (80ℎ-𝐹𝐹ℎ) in the opcode values for
vendor-specific commands, which are adequate for implementing
all REIS operations. To perform indexing, the host system issues
DB_Deploy() (or IVF_Deploy()) to the SSD. REIS reserves the re-
quired space in the NAND Flash memory according to the API and
performs de-fragmentation operations to create a physical conti-
guity. It then waits for the host to write the database content to
the DRAM, which it subsequently writes to storage as explained
in Sec. 4.1. When REIS receives Search() (or IVF_Search()) from the
host system, it performs retrieval and returns a done signal once
it has identified the document chunks to be retrieved. Once the
host system acknowledges the signal, the storage system starts to
transfer the identified document chunks to the host system. Table 1
describes each API command.

4.4.2 NAND Flash Command Set. REIS adds new commands to
the NAND flash die control logic to support the operations of the
in-storage ANNS engine for retrieval tasks. To enable this, the
controller first receives the previously described API commands
and translates them into the flash command set. It then issues
the flash commands to the flash dies to perform the necessary
operations. The control logic within each flash die is a finite-state
machine, which receives the commands and uses them to control
the peripheral logic in the flash array. Table 2 describes the NAND
flash command set extensions for querying the database.

5 Methodology
Evaluated SystemConfigurations.We evaluate REIS on two SSD
configurations,REIS-SSD1 andREIS-SSD2, based on two commer-
cial SSD products, Samsung PM9A3 [250] and Micron 9400 [207].
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Table 1: REIS Application Programming Interfaces

API Commands Description

DB_Deploy(DB, Did, N)
Write the N -entry database DB, with ID
Did to storage.

IVF_Deploy(DB, Did, N, CI)
Write the N -entry IVF-based database
DB, with ID Did to storage. CI contains
information on the IVF clusters.

Search(Q, Qid, Did, k)
Perform a top-k search for a batch of
queries Q, indexed by Qid, in the data-
base with ID Did.

IVF_Search(Q, Qid, Did, k, R)
Perform a top-k IVF search for a batch of
queriesQ, indexed byQid, in the database
with ID Did. The target accuracy is R.

Table 2: NAND Flash Command Set Extensions

ISA Format Description

IBC Q_EMB
Send a copy of the query (Q_EMB) to each page buffer
of the NAND Flash memory. (Input Broadcasting)

XOR ADR_P
Perform the XOR operation between PL and CL of a
plane (addressed by ADR_P).

GEN_DIST EADR
Compute the distance for a database embedding
stored at address EADR.

RD_TTL EADR
Transfer the TTL entry for the embedding stored at
EADR to the SSD DRAM.

These SSDs focus on low cost and high performance, respectively.
As a baseline for document retrieval, we use a high-end server
equipped with an AMD EPYC 9554 CPU [9] and a Samsung PM9A3
SSD [250]. Table 3 provides the properties of our SSDs and the
baseline CPU system (CPU-Real). To highlight the improvements
stemming from our database layout and In-Storage Processing, we
first compare REIS and CPU-Real using brute force search (BF).
We then compare REIS and CPU-Real on Approximate Nearest
Neighbor Search. Since (i) the loading time makes up the biggest
fraction of the execution time (see Sec. 3.2), and (ii) HNSW indexes
take up significantly more space than IVF ones, IVF outperforms
HNSW when loading time is taken into account. We evaluate both
REIS and CPU-Real with the IVF algorithm using BQ and reranking,
provided by the FAISS library [72], sweeping the accuracy of IVF
from 0.98 down to 0.9 𝑅𝑒𝑐𝑎𝑙𝑙@10. In order to perform a sensitivity
study, we introduce No-OPT as a baseline, a REIS configuration
that uses the In-Storage ANNS Engine without DF, PL, and MPIBC.
To quantify the performance overheads stemming from ANNS only,
we introduce an additional comparison point based on the CPU
baseline, which incurs zero overheads from data movement due
to storage I/O, called No-I/O. We additionally compare REIS to
two state-of-the-art designs, NDSearch [299] and ICE [106], which
use graph-based and cluster-based ANNS, respectively. To ensure
a fair comparison we make the appropriate modifications to our
experimental methodology whenever required.

Performance & Energy Evaluation. Our SSD operation model
and parameters are based on Flash-Cosmos [224] while the inter-
nal SSD DRAM is modeled using CACTI7 [18]. We use Zsim [252]
and Ramulator [57, 150] to simulate the embedded SSD controller
cores. We model SSD power consumption based on a commodity
product [249] and real chip characterization results from Flash-
Cosmos [224]. The power of the SSD’s internal DRAM and that of
the embedded cores are also derived from CACTI7 [18] and the char-
acteristics of a commodity embedded SSD controller processor [13],
respectively. We measure the power of CPU-Real using AMD 𝜇Prof
[10] for the CPU and a DDR4 model [86, 208] for DRAM.
EvaluatedDatasets.We evaluate two datasets from an information
retrieval benchmark [274],NQ andHotpotQA, a public dataset based
on wikipedia [61] (wiki_full) and its English subset (wiki_en). For
the comparison to NDSearch [299] we use two billion-scale datasets
that were used to evaluate NDSearch, SIFT1B and DEEP1B [265].

Table 3: Evaluated System Configurations

System Configuration

CPU-Real
CPU: 2 sockets, 128 cores, 3.1GHz [9];
DRAM: 1.5TB DDR4 [208]; SSD: PM9A3 [250]

REIS-SSD1

8 channels; 16 512Gb dies/channel; 2 planes;
1.2 GB/s channel bandwidth;
22.5µs tR (ESP-SLC) [224];
Embedded Cores: Cortex R8 [13]; 4 cores;

REIS-SSD2

16 channels; 8 512Gb dies/channel; 4 planes;
2.0 GB/s channel bandwidth;
22.5µs tR (ESP-SLC) [224];
Embedded Cores: Cortex R8 [13]; 4 cores;

6 Evaluation
We evaluate the effectiveness of REIS compared to different base-
lines. First, we evaluate the effectiveness of REIS at improving the
performance and energy efficiency of the retrieval stage of the RAG
pipeline. Second, we evaluate the effect of REIS on the performance
of the end-to-end RAG pipeline. Third, we conduct a sensitivity
study to analyze the effect of different optimization techniques in
REIS. Fourth, we compare REIS to two prior works [106, 299] that
use cluster- and graph-based ANNS algorithms, respectively.

6.1 Retrieval Performance & Energy Efficiency
Performance. Figure 7 shows the performance of REIS, measured
in Queries-per-Second (QPS) and normalized to CPU-Real.Wemake
three observations. First, REIS-SSD1 and REIS-SSD2 improve per-
formance over CPU-Real by an average of 13× with a maximum of
112×, demonstrating the benefit of alleviating the I/O bottleneck
of the RAG retrieval process. Second, REIS-SSD1 and REIS-SSD2
outperform No-I/O by an average of 1.8× with a maximum of 5.3×
due to the massive internal parallelism of storage systems that
REIS exploits. Third, REIS-SSD2 provides a 2.6× average speedup
over REIS-SSD1, with a maximum of 3.2×, reflecting the benefits of
higher channel counts (2×) and channel bandwidth (1.7×).
Energy Efficiency. Figure 8 presents the energy efficiency (QPS/W)
of REIS normalized to CPU-Real. We make two observations. First,
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Figure 7: Performance (QPS) normalized to CPU-Real
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Figure 8: Energy efficiency (QPS/W) normalized to CPU-Real

REIS-SSD1 and REIS-SSD2 improve energy efficiency over CPU-
Real by 55× on average and up to 157×. This improvement in energy
efficiency fundamentally stems from the 29.7× lower power con-
sumption of SSDs compared to the CPU baseline on average. Second,
REIS-SSD2 provides 2.2× higher energy efficiency over REIS-SSD1
on average, with a maximum of 2.6×. This improvement in energy
efficiency is similar to REIS-SSD2’s performance improvement over
REIS-SSD1, suggesting that most of the energy efficiency gains
stem from the higher throughput of SSD2’s design.

6.2 End-to-End Performance Analysis
Table 4 breaks down the latency of different stages of the RAG
pipeline on REIS-SSD1 and on a CPU-based system using binary
quantization (i.e., the same system as in Fig. 3). Similarly to our anal-
ysis in Fig. 3, we use the HotpotQA and wiki_en datasets. Since REIS
performs retrieval within the storage system, it does not perform
the Dataset Loading step that transfers data to the host’s DRAM.
We observe that REIS reduces the combined latency of Dataset
Loading and Search from 20.3%-69.3% down to 0.02%-0.15%, which
demonstrates that REIS efficiently eliminates the data movement
bottleneck of RAG retrieval. When using REIS, Generation accounts
for 92% of the total time, which demonstrates that LLM inference is
now the new bottleneck. Overall, REIS reduces the average end-to-
end latency by 1.25× and 3.24× on HotpotQA and NQ, respectively.

6.3 Sensitivity Study
Fig. 9 presents a sensitivity study of all proposed optimizations
introduced by REIS, i.e., Distance Filtering (DF), Pipelining (PL)
and Multi-Plane Input Broadcasting (MPIBC) on top of No-OPT.
We choose wiki_full [61] as the dataset to analyze and normalize
results (i.e., QPS) to the performance of the CPU-Real. We make
three observations. First, among all proposed optimizations, DF
contributes the most to the speedup over No-OPT by an average of
4.7× and 5.7× and a maximum of 5.1× and 6.5× for REIS-SSD1 and
REIS-SSD2, respectively. The main source of this speedup is that

filtering out embeddings with large distances inside each NAND
flash die significantly reduces (i) unnecessary data movement to
the SSD controller’s DRAM, and (ii) the amount of data input to the
Quickselect kernel. Second, the benefit from PL increases for SSDs
with higher internal bandwidth due to more channels and higher
I/O rate. Specifically, in SSDs with high internal bandwidth (e.g.,
the 32GB/s of bandwidth for REIS-SSD2), pipelining can completely
overlap (i) reading a new page, and (ii) transferring out the filtered
TTL entries from the NAND flash dies to the SSD’s internal DRAM.
Third, the benefit from MPIBC increases for SSDs with more planes
per die. Specifically, the average speedup of DF+PL+MPIBC over
DF+PL is 6% and 26% for REIS-SSD1 and REIS-SSD2.
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Figure 9: Effects of different REIS optimizations on through-
put (normalized to CPU-Real), evaluated on dataset [61].

Table 4: RAG Latency Breakdown for REIS and the CPU-
based system with Binary Quantization of Fig. 3.

HotpotQA NQ
Latency contribution (%) REIS CPU+BQ REIS CPU+BQ

Embedding Model Loading 3.26 2.61 3.26 1.01
Encoding 0.58 0.46 0.58 0.18
Dataset Loading N/A 20.0 N/A 67.3
Search (and retrieval for REIS) 0.02 0.29 0.15 2.00
Generation Model Loading 4.16 3.32 4.16 1.28
Generation 92.0 73.0 92.0 28.0

End-to-End Latency (s) 18.97 23.79 19.0 61.69
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Figure 10: Speedup of REIS over ICE [106].

6.3.1 Comparison with REIS-ASIC. To quantify the performance
loss due to not using ESP (thus requiring ECC which incurs data
transfers to the SSD controller), we compare REIS against a new
scheme, REIS-ASIC, which: (i) instead of ESP, uses ECC performed
by the SSD controller, (ii) performs all other operations using an
ideal ASIC with no computational overhead but (iii) requires that
all data be transferred to the controller. REIS-ASIC experiences a
slowdown between 4.1×-5.0× (3.9×-6.5×) for SSD-1 (SSD-2), across
all recall values and datasets, due to the data movement overheads
introduced by the data transfers due to not using ESP.

6.4 Comparison to Prior Works
We compare the performance of REIS to two state-of-the-art ISP-
based ANNS accelerators, ICE [106] and NDSearch [299], which
use cluster- and graph-based algorithms, respectively.
Comparison to ICE. Fig. 10 shows the speedup of REIS com-
pared to ICE [106], a state-of-the-art ISP scheme for vector similar-
ity search. When using brute force (BF), REIS achieves a speedup
greater than 10× across all configurations. For IVF, the speedup
increases with higher recall values, demonstrating superior perfor-
mance to that of ICE. Specifically, across all datasets with SSD-2,
REIS outperforms ICE by an average of 7.1× (22.9×) at 0.90 (0.98)
recall@10. We also perform a comparison to ICE-ESP, an idealistic
implementation of ICE that does not require ECC, but still uses 4-bit
quantization (not shown in Fig. 10). Even compared to ICE-ESP,
REIS achieves a geomean speedup of 3.85× (3.92×) in BF for SSD-1
(SSD-2). When configured to target 0.9 recall@10 using IVF, REIS
achieves 2.08× (2.29×) higher performance over ICE-ESP, a number
that rises to 2.84× (3.18×) for 0.98 recall@10 for SSD-1 (SSD-2).
Comparison to NDSearch. Fig. 11 compares the performance
of REIS using IVF [72], against NDSearch using HNSW [195] and
DiskANN [115].We perform this comparison using two billion-scale
datasets, SIFT-1B and DEEP-1B [265], with 0.94 and 0.93 Recall@10,
respectively. We normalize the throughput of REIS to that of ND-
Search with HNSW and DiskANN and observe that it outperforms
NDSearch by an average of 1.7× with a maximum of 2.6×.
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Figure 11: Performance comparison of REIS and NDSearch.

7 Discussion
In this section, we discuss potential extensions and optimizations
to REIS. First, we discuss augmenting REIS with filtered search on
user-defined metadata. Second, we address the impact of REIS on
typical SSD management operations and lifetime. Third, we provide
alternative implementations for REIS’s embedding-document link-
age which alleviate the logical to physical contiguity requirements.

7.1 Metadata Filtering
To improve generation qualitymodern LLM serving frameworks [37,
182] incorporate metadata filtering [229, 290, 301] to RAG retrieval.
Metadata filtering augments database entries with information such
as timestamps, author information, or other relevant metadata that
can be used during the search process to improve document re-
trieval. REIS could potentially be enhanced with this feature by
storing the metadata of each embedding in reserved NAND flash
memory (i.e., in the OOB region [319]).

To perform metadata filtering in a read-only database [124, 229],
this enhanced version of REIS: (i) assigns a corresponding metadata
tag (an integer number) to each embedding and (ii) places the tag in
the OOB area during database deployment. During RAG retrieval,
REIS receives the query embedding alongside a metadata tag and
compares it to the tags of each database embedding, using the
existing approach for calculating the embedding distance. Before
performing the subsequent retrieval steps, REIS checks the result of
the metadata computation, filtering out results that do not match.
For continuously updated databases providing real-time knowledge
retrieval [43, 44, 80, 134], REIS (i) periodically creates new databases
to store new information at a predefined frequency (e.g., every
hour), (ii) treats each sub-database as a normal database tagged
with an individual timestamp, (iii) maintains an entry for each
database in the internal DRAM, including the database address and
the timestamp. When the host sends a query with a requested time,
REIS identifies the corresponding databases to be searched by first
comparing the requested time with the timestamps stored in the
internal DRAM and then performs search and retrieval operations
within the identified databases.

7.2 Implications on the Storage System
Typical SSD operations.While REIS is primarily designed to accel-
erate RAG, it also serves as a conventional storage system. As such,
the SSD controller must handle routine maintenance tasks, such
as data refresh and garbage collection [132, 313, 317]. To ensure
uninterrupted execution of maintenance operations, we (i) confine
REIS to only one of the embedded cores of the SSD and (ii) prioritize
maintenance tasks over RAG operations when all cores are needed
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for maintenance. Since REIS primarily targets read-intensive RAG
workloads, write operations are expected to be infrequent, making
full core utilization a rare occurrence. To simplify the design, REIS
operates exclusively in either RAG-mode or normal SSD mode at
any given time. To switch between the two modes, it is necessary to
load the necessary FTL data (coarse-grained for RAG (see Sec. 4.1.4),
fine-grained for normal operations). Since REIS exclusively oper-
ates in one of the two modes, performance of normal read/write
operations from the host remains unaffected.
Impact on SSD Lifetime. Although REIS disables ECC in the SLC
partition to support in-die logic operations, this does not reduce
SSD lifetime for two reasons. First, using SLC-mode instead of MLC
inherently increases the distance between threshold voltages, en-
hancing flash memory cell reliability. Second, REIS employs ESP for
the SLC partition, which achieves a 0 BER [224], in a worst-case sce-
nario, (i.e., 1-year retention time, 10k Program/Erase cycles) [224].
Contiguity Requirements. Coarse grained access (i.e., the light-
weight L2P mapping scheme of Sec. 4.1.4) requires the existence of
contiguous unallocated physical space. In order to further reduce (i)
the memory footprint, and (ii) translation overheads stemming from
L2P metadata, REIS also uses the same contiguity-based approach
in the document region of the database. An alternative approach,
which does not require contiguity in the document region, would be
to link embeddings to the physical addresses of their corresponding
document chunks via the OOB area, enabling document chunks to
be placed anywhere in storage. However, this approach introduces
additional complexity as it entails updating the physical address in
the OOB region whenever the documents are remapped to another
region of the SSD (e.g., during updates).

8 Related Work
To our knowledge, REIS is the first system based on In-Storage
Processing (ISP) that accelerates the retrieval stage of Retrieval-
Augmented Generation (RAG). We have already qualitatively and
quantitatively compared REIS to two existing state-of-the-art ISP-
based ANNS accelerators [106, 299] in Section 6.4. In this section,
we discuss works that improve RAG from other perspectives and
relevant works for Nearest Neighbor Search Acceleration.

8.1 RAG Enhancements
Prior work has proposed various optimizations to the RAG pipeline.
RQ-RAG [34], a representative prompt engineering [34, 83, 140, 294]
method, decomposes complex queries and disambiguates queries
with more than one possible interpretation. Small-to-Big Retrieval
[318], an improved document chunking strategy [157, 235, 275],
uses small document chunks for the retrieval search and returns
bigger chunks covering the same context. Hybrid approaches incor-
porate dense retrieval with sparse retrieval to capture both semantic
and lexical similarity between query and documents [187, 297], or
combine database search with web search when the knowledge
base cannot provide relevant information [314].

8.2 Nearest Neighbor Search Acceleration
Due to the widespread adoption of ANNS to billion-scale recom-
mendation systems [79, 81, 108, 170, 330, 333], recent works have
proposed dedicated libraries [70, 72, 268] and optimized algorithms

[23, 194, 195, 213, 288] to improve its performance. These works im-
prove the performance of ANNS through various optimizations
for processor-centric systems. Since these optimizations target
processor-centric systems, they cannot overcome the I/O data move-
ment bottleneck that REIS aims to alleviate.

Various ANNS hardware accelerators [92, 113, 138, 178, 220,
242, 277, 299, 310, 327, 342] leverage approaches such as mem-
ory expansion [113, 242] and multi-node parallelism. [92, 277, 327].
Processing-in-Memory techniques (PIM) have also been explored
for accelerating Nearest Neighbor Search. For example, [232] pro-
poses a CXL-based device that places vector product accelerators
near LPDDR memory, aiming to improve the performance of Ex-
act Nearest Neighbor Search (ENNS). In [231], Qin et al. leverage
the properties of Non-Volatile Memory technologies to perform
matrix-vector multiplication in the analog domain and accelerate
RAG pipelines in edge devices. Despite performance improvements,
DRAM-based approaches either fail to fundamentally address the
I/O data movement bottleneck from storage or incur significant
costs to serve large datasets.

9 Conclusion
We introduce REIS, a new retrieval system tailored to Retrieval-
Augmented Generation based on In-Storage Processing. REIS im-
proves performance and energy efficiency, by leveraging the ex-
isting computational resources within the storage system. REIS
comprises three key mechanisms dedicated to RAG: (i) a vector
database layout builds the correlation between embeddings and
documents to enable efficient document retrieval for ISP systems,
(ii) algorithmic support customized for the ISP-friendly Inverted
File algorithm to improve retrieval performance, (iii) an in-storage
Approximate Nearest Neighbor Search (ANNS) engine to efficiently
execute the ANNS kernel. Our evaluation shows that REIS sig-
nificantly outperforms both (i) a modern CPU-based system for
document retrieval and (ii) two state-of-the-art ISP-based ANNS
accelerators. We believe and hope that REIS will inspire further
research in In-Storage Processing, both in RAG and beyond.
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