
REIS: A High-Performance and Energy-Efficient Retrieval System
with In-Storage Processing

Kangqi Chen
ETH Zürich

Zürich, Switzerland
kangqichen695@gmail.com

Rakesh Nadig
ETH Zürich

Zürich, Switzerland
rakesh.nadig@gmail.com

Manos Frouzakis
ETH Zürich

Zürich, Switzerland
manos.frouzakis@gmail.com

Nika Mansouri Ghiasi
ETH Zürich

Zürich, Switzerland
n.mansorighiasi@gmail.com

Yu Liang
ETH Zürich

Zürich, Switzerland
yulianglenny@gmail.com

Haiyu Mao
ETH Zürich

Zürich, Switzerland
King’s College London (KCL)
London, United Kingdom
maohaiyu1993@gmail.com

Jisung Park
POSTECH

Pohang, Republic of Korea
jisung.park@postech.ac.kr

Mohammad Sadrosadati
ETH Zürich

Zürich, Switzerland
m.sadr89@gmail.com

Onur Mutlu
ETH Zürich

Zürich, Switzerland
omutlu@gmail.com

Abstract
Large Language Models (LLMs) face an inherent challenge: their
knowledge is confined to the data that they have been trained on.
This limitation, combined with the significant cost of retraining ren-
ders them incapable of providing up-to-date responses. To overcome
these issues, Retrieval-Augmented Generation (RAG) complements
the static training-derived knowledge of LLMs with an external
knowledge repository. RAG consists of three stages: (i) indexing,
which creates a database that facilitates similarity search on text
embeddings, (ii) retrieval, which, given a user query, searches and
retrieves relevant data from the database and (iii) generation, which
uses the user query and the retrieved data to generate a response.

The retrieval stage of RAG in particular becomes a significant
performance bottleneck in inference pipelines. In this stage, (i) a
given user query is mapped to an embedding vector and (ii) an
Approximate Nearest Neighbor Search (ANNS) algorithm searches
for the most semantically similar embedding vectors in the database
to identify relevant items. Due to the large database sizes, ANNS
incurs significant data movement overheads between the host and
the storage system. To alleviate these overheads, prior works pro-
pose In-Storage Processing (ISP) techniques that accelerate ANNS
workloads by performing computations inside the storage system.
However, existing works that leverage ISP for ANNS (i) employ
algorithms that are not tailored to ISP systems, (ii) do not acceler-
ate data retrieval operations for data selected by ANNS, and (iii)
introduce significant hardware modifications to the storage system,
limiting performance and hindering their adoption.

This work is licensed under a Creative Commons Attribution 4.0 International License.
ISCA ’25, Tokyo, Japan
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1261-6/25/06
https://doi.org/10.1145/3695053.3731116

We propose REIS, the first Retrieval system tailored for RAGwith
In-Storage processing that addresses the limitations of existing im-
plementations with three key mechanisms. First, REIS employs
a database layout that links database embedding vectors to their
associated documents, enabling efficient retrieval. Second, it en-
ables efficient ANNS by introducing an ISP-tailored algorithm and
data placement technique that: (i) distributes embeddings across all
planes of the storage system to exploit parallelism, and (ii) employs a
lightweight Flash Translation Layer (FTL) to improve performance.
Third, REIS leverages an ANNS engine that uses the existing com-
putational resources inside the storage system, without requiring
hardware modifications. The three keymechanisms form a cohesive
framework that largely enhances both the performance and energy
efficiency of RAG pipelines. Compared to a high-end server-grade
system, REIS improves the performance (energy efficiency) of the
retrieval stage by an average of 13× (55×). REIS offers improved
performance against existing ISP-based ANNS accelerators, without
introducing any hardware modifications, enabling easier adoption
for RAG pipelines.

CCS Concepts
• Information systems→ Top-k retrieval in databases; •Hard-
ware →Memory and dense storage.

Keywords
Retrieval-Augmented Generation, In-Storage Processing, SSD, LLM

ACM Reference Format:
Kangqi Chen, Rakesh Nadig, Manos Frouzakis, Nika Mansouri Ghiasi, Yu
Liang, Haiyu Mao, Jisung Park, Mohammad Sadrosadati, and Onur Mutlu.
2025. REIS: A High-Performance and Energy-Efficient Retrieval System
with In-Storage Processing. In Proceedings of the 52nd Annual International
Symposium on Computer Architecture (ISCA ’25), June 21–25, 2025, Tokyo,
Japan. ACM, New York, NY, USA, 22 pages. https://doi.org/10.1145/3695053.
3731116

1171

ISCA ’25, June 21–25, 2025, Tokyo, Japan Chen et al.

1 Introduction
The rapid development of Large Language Models (LLMs) [73, 74,
122, 181, 272, 331] during the past decade has led to their wide-
spread adoption, as witnessed by the popularity of chatbots such
as ChatGPT [222], Gemini [271, 272] and DeepSeek [181]. Despite
this progress, modern LLMs remain limited in generating responses
only from data present in their training sets. The significant cost and
hardware requirements [73, 181, 285] of training further compound
this problem, making frequent retraining on new data impractical,
thus limiting the effectiveness of LLMs in especially domain-specific
and real-time scenarios [119, 120, 200].

Retrieval-Augmented Generation (RAG) [24, 39, 45, 77, 83, 84,
111, 123, 124, 145, 166, 169, 232, 233, 253, 303, 314, 324, 326] presents
a compelling solution to this problem by leveraging information
retrieval techniques to feed relevant content from a document data-
base into LLMs for text generation. At inference-time, RAG systems
retrieve documents from the database that are relevant to user
queries, using these to complement the training-derived knowl-
edge of LLMs and generate contextually relevant responses. Many
recent works demonstrate the applicability of RAG to fields such
as healthcare [186, 287, 309, 325], law [56, 105, 185, 304], finance
[322, 329, 336], and scientific research [156, 302].

The general workflow of RAG consists of a pipeline comprised
of three stages: (i) indexing, (ii) retrieval, and (iii) generation. First,
the indexing stage is an offline process that builds a vector database
of high-dimensional embeddings [58, 158, 160, 164, 212, 221, 274].
Indexing employs algorithms that cluster similar data or create
graph-like structures [63, 68, 195, 343], in order to facilitate future
search operations on the data. Second, for each incoming query, the
retrieval stage identifies document chunks that are semantically
relevant to the query. To perform this, RAG employs a process
known as dense retrieval [81, 108, 335], which encodes the query in
the same vector space as document chunks and performs a similarity
search between the query and the database embeddings. Third, the
generation stage feeds both the identified document chunks and
the query into the LLM to generate the final response.

Although dense retrieval enables accurate semantic similarity
comparison between incoming queries and document chunks [83,
273, 274, 335], the large embedding space results in expensive dis-
tance computations. For RAG pipelines, a retriever that achieves
both high recall and low latency is essential because it (i) determines
the quality of generated responses, and (ii) resides in the critical
path of the response generation process. To strike a balance between
these two conflicting objectives, RAG commonly performs dense
retrieval with Approximate Nearest Neighbor Search (ANNS) tech-
niques, e.g., [78, 79, 97, 109, 153, 172, 183, 194, 232, 295]. Examples
of such techniques are: (i) employing data structures that accelerate
the search [63, 195, 328, 343], and (ii) quantizing data to reduce the
computational complexity [116, 239] of search operations without
significantly affecting recall.

The reduced computational complexity of ANNS renders I/O
data transfers a significant bottleneck that limits search perfor-
mance [106, 178, 299, 310]. As a result, several works [106, 178, 299,
310] propose In-Storage Processing (ISP) as a promising solution
to accelerate ANNS-based workloads [79, 81, 108, 170, 330, 333].
In particular, NDSearch [299] demonstrates that (i) storage I/O

accounts for up to 75% of the end-to-end ANNS latency, and (ii)
ISP improves ANNS performance by 31.7× over a conventional
CPU-based system, effectively mitigating the aforementioned I/O
bottleneck.

We empirically make a similar observation for RAG pipelines,
where the ANNS-based retrieval stage becomes the performance
bottleneck due to substantial I/O overheads, as presented in Sec. 3.1.
For example, when examining a RAG database containing 41.5 mil-
lion document entries [60], the I/O traffic from the storage system
accounts for 84% of the overall latency of the entire RAG pipeline.
Although various software and hardware solutions that reduce the
storage footprint do exist, these approaches are either unscalable
(e.g., quantization methods [81, 135, 209]) or unsustainable (e.g.,
memory expansion [113]). We conclude that In-Storage Process-
ing (ISP) techniques are essential for fundamentally addressing the
critical I/O data movement bottleneck in RAG pipelines.

Existing ISP-based ANNS accelerators [106, 178, 299, 310] face
three key limitations that hinder their application to RAG work-
loads. First, previous works employ search algorithms that cause
performance degradation in ISP systems. Graph-based algorithms
[115, 195] used by ISP accelerators [178, 299] perform searches us-
ing graph traversal, a sequential process. During graph traversal,
the algorithm determines the next vertex to visit in the graph based
on the analysis of the vertex currently being visited. However, this
process exhibits irregular data [75, 76] access patterns, complicating
optimization and efficient execution in ISP systems. Second, existing
ISP schemes mainly focus on accelerating ANNS, the search stage
in RAG applications, without optimizing the document retrieval
stage, which, as we show in Sec. 3.2, contributes significant latency
to the RAG pipeline. Third, in their quest to accelerate ANNS appli-
cations, existing ISP schemes introduce significant storage [106] or
hardware [192] overheads.

Our goal is to fundamentally alleviate the I/O data movement
bottlenecks in the retrieval stage of the RAG pipeline. To this end,
we propose REIS, A Retrieval system with In-Storage Processing
that employs three new key ideas: 1) an efficient ISP implementation
of the clustering-based Inverted File (IVF) algorithm [63, 328, 343]
to improve end-to-end retrieval performance, 2) a new low-cost
hardware-assisted mechanism in the storage system to link em-
beddings to their corresponding document chunks, enabling their
faster retrieval, 3) a customized in-storage ANNS computation en-
gine using the already available resources within a modern storage
system to enhance the energy efficiency of the retrieval process
without additional hardware.

Key Mechanism. To implement the aforementioned ideas, REIS
leverages three key mechanisms. First, we propose an ISP-tailored
data placement technique and execution flow that take into account
the properties of the Inverted File (IVF) algorithm [63, 343]. Since
IVF organizes embeddings into clusters of similar vectors, our data
placement technique (i) stores embeddings contiguously, reduc-
ing the address translation overhead from the Flash Translation
Layer (FTL) and, (ii) distributes embeddings across planes to exploit
the available parallelism. To execute the IVF algorithm, REIS uses:
(i) the existing logic within the planes to calculate the similarity
between embeddings and (ii) the SSD controller to identify the
most similar embeddings. Second, to efficiently link embeddings
to documents, REIS employs a new database layout, that (i) stores

1172

REIS: A High-Performance and Energy-Efficient Retrieval System with In-Storage Processing ISCA ’25, June 21–25, 2025, Tokyo, Japan

embeddings and document chunks in separate regions, and (ii) cre-
ates connections between the two using the Out-Of-Band (OOB)
area of the NAND Flash array, enabling efficient document retrieval.
Third, we customize the ANNS engine by using binary quantiza-
tion [81, 209, 260] and a hybrid SSD design [36]. Binary quantization
reduces the computational complexity of ANNS, while the hybrid
SSD design combines reliable ISP with high storage density. Specif-
ically, our hybrid SSD design employs (i) SLC, using Enhanced SLC
programming [224] for high-performance and reliable In-Storage
computation on embeddings and (ii) TLC for storing document
chunks at high density.

KeyResults.We evaluate REIS on two SSD configurations based
on a cost- [250] and a performance-oriented [207] SSD design. We
compare its performance and energy efficiency against a high-end
256-core CPU system on two commonly used benchmark datasets
from BEIR [274] and a large-scale public dataset [60], demonstrating
that REIS (i) achieves an average speedup of 13× and up to 112×, and
(ii) improves energy efficiency by an average of 55× and up to 157×.
Compared to a state-of-the-art ISP-based ANNS accelerator [106]
REIS yields an average speedup of 21.4× (7.67×) and 24.2× (9.76×)
at 0.98 (0.90) 𝑅𝑒𝑐𝑎𝑙𝑙@10 across all evaluated datasets for the cost-
and performance-oriented SSDs, respectively. Since REIS does not
introduce any hardware modifications to the storage system, its
adoption for RAG is much easier than prior ISP-based accelerators.

The contributions of this work are listed as follows:

• This is the first work to quantitatively evaluate the large
performance overheads of I/O data movement in the retrieval
stage of the Retrieval-Augmented Generation pipeline.

• We comprehensively analyze the limitations of existing tech-
niques that aim to alleviate the I/O datamovement bottleneck
of the RAG pipeline. We identify two major issues that make
integrating existing ISP-based ANNS accelerators into the
RAG pipeline inefficient and impractical.

• We propose REIS, the first ISP-based retrieval system tai-
lored for RAG. REIS (i) supports efficient document retrieval
by building the correlation between embeddings and doc-
uments within the storage system, (ii) improves retrieval
performance by introducing an ISP-friendly algorithm, and
(iii) improves energy and area efficiency via a customized
in-storage ANNS computation engine using computational
resources already available in a modern storage system.

• We implement REIS based on a cost- and a performance-
oriented SSD design and evaluate its performance and energy
efficiency. Against a 256-core CPU system, REIS provides
an average speedup (energy efficiency improvement) of 13×
(55×). Compared to a state-of-the-art ISP-based ANNS accel-
erator, REIS accelerates RAG retrieval from 7.67× and up to
24.1× depending on (i) the SSD configuration used, and (ii)
the target 𝑅𝑒𝑐𝑎𝑙𝑙@10 value.

2 Background
2.1 Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG) [24, 39, 45, 77, 83, 84, 111,
123, 124, 145, 166, 169, 232, 233, 253, 303, 314, 324, 326] is the process
of incorporating knowledge from an external document database

into LLM inference. To identify the most relevant data, RAG em-
ploys dense retrieval [83, 335], a similarity search operation on
dense vectors representing the semantics of the text, called embed-
dings [20, 158, 160, 164, 202, 211, 292, 293]. To encode this informa-
tion, embeddings feature high dimensionality, often containing 768
to 8192 dimensions [20, 158, 160, 164, 202, 211, 212, 292, 293].

As mentioned in Sec. 1, RAG is a pipeline comprised of three
stages: (i) indexing, (ii) retrieval, and (iii) generation. Indexing cre-
ates data structures such as clusters or graphs, that facilitate faster
semantic similarity search on the embeddings [63, 68, 195, 343]. In
the retrieval step, the RAG system receives a query and encodes it
as an embedding. It then searches the database for the 𝑘 most simi-
lar embeddings, with 𝑘 being a parameter specified by the system.
Once the most similar embeddings are identified, the RAG system
retrieves the corresponding document chunks. In the generation
stage, both the retrieved document chunks and the query are fed
to the LLM in order to perform inference and generate a response.

While the main application for RAG currently is document re-
trieval for question answering [38], researchers have also proposed
multi-modal RAG pipelines [100, 303, 337]. For example, Vision
Transformers [71] enable joint image and text retrieval [121, 234,
338]. Other works [88] combine even more modalities into the same
embedding space such as audio, depth, thermal and movement data.

2.2 Approximate Nearest Neighbor Search
The retrieval stage forms a critical bottleneck in the RAG pipeline, as
generation cannot begin before the relevant document chunks have
been retrieved. The simplest method of identifying the 𝑘 most rele-
vant (top-𝑘) embeddings is Nearest Neighbor Search (NNS), which
entails: (i) calculating the distances (e.g. Euclidean Distance [12, 15])
between the query and all database embeddings and (ii) selecting the
𝑘 database embeddings with the lowest distance. However, a brute-
force approach incurs significant computational overheads due to
(i) the large size of embedding vectors [212] and (ii) the large number
of database embeddings, reaching multiple millions [60, 320] and
even billions [8, 114], resulting in expensive distance computations.
To accelerate the retrieval stage, RAG often performs Approximate
Nearest Neighbor Search (ANNS) [172], trading off some retrieval ac-
curacy for faster similarity search. To quantify this drop in accuracy,
researchers often use the 𝑅𝑒𝑐𝑎𝑙𝑙@𝑘 metric [42, 172, 183, 197, 295],
which is defined the fraction of how many of the 𝑘 most relevant
document chunks have actually been retrieved by ANNS.

Two popular methods for performing ANNS are (i) quantiza-
tion [81, 116, 135, 209, 239] and (ii) algorithm-based techniques [78,
79, 97, 109, 153, 172, 183, 194, 232, 295]. Quantization methods com-
press data, reducing their storage footprint and speeding up com-
putation. For Example, Product Quantization (PQ) [116] partitions
large embedding vectors into smaller sub-vectors and assigns each
sub-vector to a cluster. PQ then concatenates the IDs of the clusters
into a new vector that represents the original vector. Binary Quan-
tization (BQ) compresses each embedding component from its orig-
inal floating-point precision (e.g., FP32) down to a single bit, achiev-
ing a 32× compression ratio. Recent studies [135, 212, 239, 260]
show that BQ accelerates ANNS by up to 40×, with a small impact
on recall when combined with a low-cost rescoring step [239].

1173

ISCA ’25, June 21–25, 2025, Tokyo, Japan Chen et al.

Algorithm-based methods organize data by clustering them or
creating graph-like data structures, which can be searched effi-
ciently without traversing the entire database. For example, the
Inverted-File (IVF) algorithm [63, 328, 343] organizes embeddings
into clusters that are each represented by a centroid. To perform a
search for a given query embedding, first a coarse-grained search
identifies the cluster centroids closest to the query embedding. Sec-
ond, a fine-grained search on all embeddings within these clusters
(approximately) yields the closest neighbors to the query embed-
dings. Other algorithms also exist, such as: (i) Hierarchically Nav-
igable Small World (HNSW) [195], which constructs a hierarchy
of graphs, where higher and lower levels of the hierarchy direct
the search in a coarse- and fine-grained manner, respectively, and
(ii) Locality-Sensitive Hashing (LSH) [68], which hashes similar
embeddings into the same bucket with high probability.

2.3 SSDs & NAND Flash Memory
Figure 1 presents an overview of a modern SSD architecture based
on NAND flash memory. An SSD comprises of an SSD controller,
DRAM and multiple NAND flash chips. The SSD controller (1) [3,
25, 27–29, 32, 270] handles the I/O requests from the host, and per-
forms maintenance tasks such as garbage collection (e.g., [3, 26,
27, 29, 53, 130, 161, 259, 270, 307, 316]) and wear-leveling (e.g., [3,
180, 262, 340]). The SSD controller contains multiple embedded mi-
croprocessors (2) [14] that execute the firmware called the Flash
Translation Layer (FTL) [95, 180, 262, 270, 340]. The SSD controller
stores metadata (e.g., logical-to-physical page mapping table [95])
and frequently-accessed pages in a DRAM (3) internal to the SSD.
The DRAM size is typically 0.1% of the storage capacity (e.g., 1GB
DRAM for each TB of storage capacity [251]). The SSD controller
translates the logical page address of each I/O request to a physical
page address, and issues commands to the flash chips [3, 26, 214] via
the flash controllers. An SSD consists of multiple flash controllers
(4) [141, 143, 203, 205, 305], which are embedded processors that
interface the SSD controller with flash chips (5). Each flash con-
troller is responsible for communication with multiple flash chips
sharing the same channel. The flash controller selects a flash chip
for read/write operations and initiates command and data transfers.

Embedded
Processor
Embedded
Processor
Embedded
Processor

Embedded
Processor

SSD Controller
Flash

Controller

Flash
Controller

…

Cache Buffer
Data Buffer

Sensing Buffer

Out-Of-BandUser Data

D
ie

D
ie …

Channel

…

Pass-Fail
Checker

Fail-Bit
Counter

Plane #0
Page Buffer

Peripheral
Logic

Page
DRAM

Host

PCIe

2
1

3

4

Flash Chip

6

9

7

131415

D
ie

D
ie…

D
ie

D
ie… D
ie

D
ie……

Cache Buffer
Data Buffer

Sensing Buffer

Plane #1
Page

Page Buffer

5

8

10
11
12

Figure 1: NAND Flash Memory Architecture

Each NAND flash chip is comprised of multiple flash dies (6),
which operate independently of each other. Each die consists of
2–16 planes (7) [51, 147, 152] , that can perform read or write oper-
ations in parallel. Planes are further divided into groups of blocks,
with each block consisting of hundreds of pages (8). A flash page,

typically sized at 16KB, consists of thousands of NAND flash cells
placed horizontally. A flash page typically stores user data, and
consists of a dedicated out-of-band area (9) [107, 267, 321] (e.g.,
64-256 bytes) to store metadata related to error correction codes
and logical-to-physical mapping. NAND flash memory executes
read and program operations at the page granularity, and performs
erase operations at block granularity [25, 30, 32, 62, 184, 203, 224].
A flash die employs a page buffer which acts as an intermediate
buffer during read and write operations. The page buffer consists
of multiple buffers [101, 137, 165, 189, 204, 206, 246, 261, 284] (e.g.,
three buffers if each flash cell stores 3 bits) to store the bits in a flash
page. The sensing buffer (10) is the main buffer that temporarily
stores flash page data during the read operation. The cache buffer
(11) improves read performance by enabling data transfer from
the flash chip to the flash controller in parallel with the next read
operation. Data buffers (12) are typically used when (1) program-
ming multiple bits per cell, and (2) reading a single bit from a flash
cell that stores multiple bits.

Based on the number of bits stored in a flash cell, a flash cell can
be classified as a single-level cell (SLC; 1 bit) [49], multi-level cell
(MLC; 2 bits) [163], triple-level cell (TLC; 3 bits) [51, 147, 190], or
quad-level cell (QLC; 4 bits) [50]. While the SSD capacity increases
as each flash cell stores more bits, the increased value density leads
to higher latency and lower endurance [26, 27, 29, 31, 203]. To enable
reliable writes to flash cells, SSD manufacturers use Incremental
Step Pulse/Erasure Programming (ISPP/ISPE) techniques [117, 266].
ISPP/ISPE technique iterates through multiple steps of gradually
inserting/ejecting electrons into/from the flash cell until the de-
sired charge level is reached. The peripheral circuitry (13) in each
flash die includes an on-chip digital bit counter, pass/fail checking
logic and XOR logic between the latches. The digital bit counter
and pass/fail checking logic [48, 52, 203] are used to test the state
of the cells and guide the ISPP/ISPE process. To further increase
reliability, the XOR logic between the latches is used for on-chip
data randomization [33, 106, 139, 188, 224].

2.4 In-Storage Processing
In-storage processing (ISP) is a computation paradigm that enables
processing of data within the storage device. ISP techniques pro-
vide significant performance and energy efficiency benefits over
conventional systems for data-intensive applications, such as ge-
nomics [85, 198], neural networks [112, 142, 215, 300], databases [1,
35, 89, 93, 96, 98, 125, 148, 173, 174, 219, 238, 255–257, 306] and
graph analytics [19, 21, 82, 98, 127, 162, 171, 227, 257, 283]. Un-
like conventional systems, ISP techniques leverage the high in-
ternal bandwidth of the storage system and reduce data move-
ment across the memory hierarchy. ISP techniques perform com-
putation by (1) leveraging the embedded general-purpose cores
(e.g., [2, 17, 22, 94, 131, 133, 136, 146, 151, 167, 179, 199, 254, 280–
282, 291, 298]) already present in the SSDs, or (2) placing hardware
accelerators (e.g., [7, 46, 69, 118, 127–129, 149, 162, 176, 177, 193,
226, 243, 244, 283]) near the flash chips.

Prior works (e.g., [2, 17, 22, 94, 131, 133, 136, 146, 151, 167, 179,
199, 254, 280–282, 291, 298]) propose techniques to utilize the em-
bedded cores in the SSD for computations such as filtering, aggre-
gation, and encryption. These general-purpose embedded cores

1174

REIS: A High-Performance and Energy-Efficient Retrieval System with In-Storage Processing ISCA ’25, June 21–25, 2025, Tokyo, Japan

are beneficial only for simple computations because the primary
responsibility of these cores is to execute the FTL and handle I/O
requests. A large body of prior work (e.g., [7, 46, 69, 118, 127–
129, 149, 162, 176, 177, 193, 226, 243, 244, 283]) proposes to em-
bed hardware accelerators near the flash packages to accelerate
application-specific computations. These hardware accelerators pro-
vide significant performance benefits, but add area and power over-
heads to the SSD. Several prior works [106, 144, 178, 192, 299, 310]
identify the substantial I/O traffic (up to 70-75% of the end-to-
end search latency [178, 299]) in billion-scale ANNS applications
[11, 115, 126, 264, 265] and propose offloading ANNS to the storage
system. These ISP-based ANNS accelerators can largely alleviate the
I/O overhead, improving performance over conventional systems.

3 Motivation
A key limitation of modern LLMs is their inability to generate
responses with information beyond their training data. To solve this
issue, modern LLM application frameworks [37, 182, 228] support
Retrieval-Augmented Generation, combining the text generation
capabilities of LLMs [73, 74, 122, 181, 272, 331] with an external
knowledge database, as described in Sec. 2.1. Beyond information
retrieval, RAG also enables long-tail knowledgememorization [196],
alleviating the need for large models with billions of parameters
[111], and mitigating the risk of revealing training data [326].

While current research on RAG [39, 84, 169, 324, 334] mainly
focuses on further enhancing these capabilities, to our knowledge,
no existing works attempt to characterize and address the ineffi-
ciencies found in RAG pipelines. In this section, we analyze the
performance bottlenecks of RAG and discuss the issues existing
systems face when tackling these bottlenecks.

3.1 Performance Bottleneck of RAG Pipelines
As described in Sec. 2.1, RAG pipelines consist of one offline stage,
indexing, and two online stages, i.e., retrieval and generation. The
online stages of RAG entail (i) encoding the query into an embed-
ding vector, (ii) performing dense retrieval for relevant documents,
and (iii) using the retrieved documents and the query to generate
a response. For these steps, respectively, the RAG system has to
load (i) the embedding model, (ii) the RAG database and (iii) the
generation model (i.e., the LLM) from the storage system. With the
aim of identifying potential inefficiencies, we measure the latency
contributions of the above stages to the RAG pipeline.
Methodology. For encoding and generation we chose two popular
open-source models, all-roberta-large-v1 [240, 241] and Llama 3.2
1B [73], respectively. We use FAISS [72] flat indexes to link embed-
dings to document chunks. We evaluate RAG performance on two
datasets, HotpotQA [320] with 5.3 million entries and the English
subset of aWikipedia-based dataset (wiki_en) [60], with 41.5 million
entries. For each query, we retrieve the 10 most relevant document
chunks (top-10 retrieval). Our RAG system consists of a high-end
NVIDIA A100 GPU [55] for embedding and generation and two
high-end Intel Xeon Gold 5118 CPUs [110], with a Samsung PM9A3
PCIe 4.0 SSD [250] for retrieval. The system is also equipped with
1.5TB of DDR4 memory [208].
Results. Figure 2 shows the contribution of different operations
in the RAG pipeline to end-to-end execution time. We make two

84%
49%

10%
46%

0% 20% 40% 60% 80% 100%

wiki_en
HotpotQA

Fraction of Execution Time

Embedding Model Loading Encoding
Dataset Loading Search
Generation Model Loading Generation

172.82 s

37.31 s

Figure 2: Latency breakdown for a typical RAGpipeline. Total
time is displayed next to each bar.

key observations. First, dataset loading accounts for a substantial
portion of the pipeline’s overall latency, reaching 84% for wiki_en.
Second, the latency attributed to dataset loading increases with
dataset size. For example, as the dataset size grows by approximately
8× from HotpotQA to wiki_en, the percentage of latency attributed
to dataset loading increases by around 1.7×. We conclude that
dataset loading during the retrieval stage contributes significant
latency to the RAG pipeline and becomes a performance bottleneck,
especially for large datasets. We refer to this bottleneck as the I/O
data movement bottleneck in RAG pipelines.

67.3%
20%

28%
73%

0% 20% 40% 60% 80% 100%

wiki_en
HotpotQA

Fraction of Execution Time

Embedding Model Loading Encoding
Dataset Loading Search
Generation Model Loading Generation

61.69 s

23.79 s

Figure 3: Latency breakdown for a RAGpipeline using Binary
Quantization (BQ). Total time is displayed next to each bar.

As an important caveat, we acknowledge that the contribution
of I/O data movement to end-to-end RAG performance largely de-
pends on encoding and generation model sizes. Larger models
(e.g., Llama 3.2 90B [73]) increase generation latency, due to the
increased computation cost, potentially reducing the impact of I/O
data movement in the RAG retrieval stage. Even in this case, I/O
data movement can still bottleneck the RAG pipeline for two key
reasons. First, LLM acceleration techniques [6, 65, 66, 104, 155, 237,
258, 263, 289, 323] and more powerful hardware [217, 225, 269, 278]
can substantially reduce generation latency, exacerbating the I/O
bottleneck of the RAG pipeline. For instance, tensor parallelism
[155, 263, 289] enables efficient LLM generation on multi-node
GPU systems [54, 217, 278, 279], significantly improving perfor-
mance. Second, the increasingly popular Mixture-of-Experts (MoE)
LLM architecture [122, 181, 339] can reduce computational cost
and increase generation performance of large LLMs. As a result,
we anticipate that the retrieval, and not the generation stage, will
remain a significant bottleneck in future RAG pipelines.

3.2 Limitations of Existing RAG Optimizations
We discuss the limitations of existing optimizations when trying to
alleviate the I/O data movement bottleneck in RAG pipelines.
Batching. One possible solution is to batch multiple queries before
performing retrieval to amortize dataset loading overheads. How-
ever, the effectiveness of this technique remains limited in practice

1175

ISCA ’25, June 21–25, 2025, Tokyo, Japan Chen et al.

as queries from different domains (e.g., medical, law, finance) must
be served from different, domain-specific [105, 156, 185, 287, 302,
304, 309, 322, 325, 329, 336] or multi-modal datasets [16, 87, 90, 201,
210, 223, 311, 315, 344] to enhance generation quality.
Quantization. Quantization techniques, such as Product Quantiza-
tion (PQ) or Binary Quantization (BQ), can reduce the memory foot-
print of RAG applications. Recent studies [135, 209, 212, 239, 260]
demonstrate that BQ provides a good trade-off between storage
footprint and recall. To further evaluate this trade-off, we repeat
the previous experiment using BQ for the embeddings. As shown in
Fig 3, while BQ reduces the I/O data movement overhead by 17-29%
for both datasets, dataset loading remains the bottleneck for the
larger wiki_en dataset, amounting to 67% of the total latency.

While quantization significantly reduces the size of embeddings,
this is not possible for the document chunks, which amount to 9GB
of the total 14GB transferred for thewiki_en dataset (after BQ on the
embeddings). Therefore, we conclude that quantization techniques
are useful in reducing the I/O data movement bottleneck, but they
cannot eliminate it.
Algorithmic Optimization. ANNS algorithms often improve re-
trieval performance by using sophisticated indexes [63, 68, 195, 343],
which reduces search time. The data structures used to store these
indexes are often larger than the flat indexes used for simple brute-
force approaches, potentially exacerbating the I/O data movement
bottleneck. Hybrid ANNS algorithms [41, 115] attempt to overcome
the I/O data movement bottleneck by storing the index in SSDs and
loading parts of it in memory for distance computations on demand.
SPANN [41] provides the state-of-the-art performance-accuracy
tradeoff among hybrid ANNS solutions, enabling small amounts of
DRAM (e.g. 32GB) to accelerate searches in TB-sized SSD-resident
datasets. Specifically, SPANN groups embeddings into clusters and
stores them in the SSD, only keeping cluster centroids in memory.
We conduct an experimental study on SPANN and find two major
limitations of this type of solution. First, we observe that achiev-
ing a reasonable recall-accuracy tradeoff requires selecting a large
number of centroids, increasing memory footprint and lowering
performance. For example, reaching 0.92 𝑅𝑒𝑐𝑎𝑙𝑙@10 in HotpotQA
requires storing 24% of all embeddings as centroids in memory,
yielding only a 22% speedup over exhaustive search. This obser-
vation also matches with the original study of this algorithm [41].
Second, hybrid ANNS algorithms such as SPANN only optimize
storage and retrieval for embeddings and not for the document
chunks of a vector database. We conclude that hybrid ANNS algo-
rithms also do not fundamentally alleviate the I/O data movement
bottleneck.
Memory Expansion. As our analysis in Sec. 3.1 shows, data move-
ment between storage and the host contributes significant latency
to the RAG retrieval stage. Memory expansion techniques such as
those enabled by Compute Express Link (CXL) [4, 67, 91, 113, 168]
enable very large memory capacities that could theoretically keep
RAG datasets resident in memory. However, such approaches suffer
from two key drawbacks. First, main memory is significantly (i.e.,
more than an order of magnitude) more expensive per GB than
flash storage, at approximately 3.10 [248] vs 0.1 [250] USD per GB,
respectively. Second, such approaches are unsustainable as (i) con-
tinuously increasing dataset sizes, and (ii) the growing number of
datasets for domain-specific applications [105, 156, 185, 287, 302,

304, 309, 322, 325, 329, 336] eventually overwhelm the capacity of
such systems.
ANNS Acceleration Inside the Storage. Prior works propose
In-Storage processing (ISP) techniques [178, 192, 299] to allevi-
ate the I/O data movement bottleneck in the ANNS kernel. Al-
though ANNS forms a key component of RAG, existing ISP-based
ANNS accelerators cannot entirely eliminate the I/O data move-
ment bottleneck for three key reasons. First, prior ANNS accelera-
tion works [178, 192, 299] employ graph-based algorithms such as
HNSW [195] and DiskANN [115], using graph-traversal to identify
similar neighbors. During graph traversal, the algorithm performs
an analysis on the current vertex to identify the next vertex. As
a result, graph traversal induces irregular access patterns [75, 76]
that underutilize the internal bandwidth of the SSD due to costly
channel and NAND Flash chip conflicts [143, 214]. Second, prior
ISP-based ANNS accelerators [106, 178, 192, 299] focus primarily on
accelerating the search operation without providing efficient sup-
port for retrieving the associated documents. However, as shown
in Figs. 2 and 3, the dataset loading step contributes significant
latency to RAG retrieval. Third, works such as [106, 192] introduce
significant overheads storage and hardware overheads. For exam-
ple, ICE [106] in order to perform computations inside NAND flash
dies, stores data in a format that can tolerate errors without error
correction. This format incurs a 32× (8×) storage overhead for data
in 8-bit (4-bit) precision, resulting in high storage overheads. An-
other example is DeepStore [192], which incurs significant area and
power overheads by introducing a systolic array-based architecture
in the storage system to perform query matching by executing Deep
Neural Networks. Overall, these limitations hinder the adoption on
ISP-based acceleration techniques in RAG pipelines.

3.3 Our Goal
Based on our observations and analyses in Sec. 3.1 and 3.2, we
conclude that (1) the I/O data movement of RAG significantly bot-
tlenecks its performance, and (2) none of the prior techniques ef-
fectively eliminate this bottleneck in the RAG pipeline. Our goal
is to fundamentally alleviate the I/O data movement bottleneck in
RAG through an ISP design that does not introduce modifications
to the hardware of the storage system.

4 REIS
REIS is an In-Storage Processing (ISP)-based retrieval system that
alleviates the I/O data movement bottleneck in the RAG pipeline.
REIS works by receiving query embeddings from the host, query-
ing the database inside the storage, and then returning relevant
document chunks, greatly reducing communication between host
and storage system.

ISP introduces two significant design challenges. First, the avail-
able embedded cores are limited in terms of both performance and
functionality (e.g., lack of floating point support [13]). Second, the
flash channel bandwidth is limited compared to the total NAND
flash read bandwidth. As described in Sec. 4.3, REIS uses the exist-
ing hardware inside the NAND flash planes to alleviate the load on
the embedded cores, which, however, introduces new limitations:
(I) The logic inside flash dies only supports simple bitwise and bit-
counting operations. (II) NAND flash reads are unreliable, requiring

1176

REIS: A High-Performance and Energy-Efficient Retrieval System with In-Storage Processing ISCA ’25, June 21–25, 2025, Tokyo, Japan

the use of error correction codes (ECC) [31] to achieve robust op-
eration. Since ECC is typically performed by the controller [14],
performing computation inside flash dies requires fundamentally
different error mitigation mechanisms.

In this section, we explain the design decisions behind REIS,
which alleviate the aforementioned issues. Figure 4 presents an
overview of the system and the key mechanisms it consists of. First,
REIS employs a vector database layout that links embeddings with
documents in order to enable efficient document retrieval (Sec. 4.1).
Second, REIS introduces support for the Inverted File (IVF) algo-
rithm in ISP systems, improving the end-to-end retrieval perfor-
mance (Sec. 4.2.1). Third, an in-storage ANNS engine efficiently
executes the ANNS kernel (Sec. 4.3).

Peripheral Logic

Embedded
Processor

Plane #1Embedded
Processor

Embedded
Processor

Embedded
Processor

SSD Controller

Flash
Controller

Flash
Controller

…

Channel

Page Buffer Page Buffer

D
ie

D
ie… D
ie

D
ie……

DRAM

D
ie

D
ie

…

Channel

…

Plane #0
Page

R-DB R-IVF TTL
A

D
ie

D
ie

…

B C

Embedding Region Document Region

16 KB Page16 KB Page

Doc. Chunk #0

Doc. Chunk #1

…

Emb. #0

Emb. #1

…

Addr

Addr

Addr

Page Page Page

1 2

3

Figure 4: Overview of REIS.

4.1 Database Layout
REIS introduces a vector database layout that distributes and links
embeddings and documents in order to maximize the data access
parallelism for in-storage computation. The database layout (i)
distributes the vector database into an index region and a document
region, (ii) creates low-overhead links between each embedding and
its associated document chunk, and (iii) provides coarse-grained
access to each dataset to avoid frequent FTL invocations.

4.1.1 Database Distribution. During the retrieval stage of RAG,
the ANNS kernel performs distance calculations on the database
embeddings to select the top-𝑘 most similar documents. As a result,
accesses to embeddings are far more frequent than accesses to
documents. Based on this observation, we distribute the database in
three ways to improve the efficiency of accessing embeddings. First,
we map embeddings and documents to two separate regions of the
NAND flash array, the embedding (1 in Fig. 4) and the document
(2) regions, respectively. Second, we employ Parallelism-First Page
Allocation [332] to evenly distribute embeddings across all planes
of the storage system. Third, we assign each document chunk to
an individual 4KB sub-page or a 16KB page, adapting to different
document chunking granularities [5, 20, 158, 175, 211, 245, 293].

4.1.2 Hybrid SSD design. Modern SSDs employ Triple-Level Cells
(TLC) which rely on ECC to combine high density with data in-
tegrity, requiring data transfers to the embedded cores of the SSD
controller for error correction. As will be shown in Sec. 4.3, REIS per-
forms operations within the planes and dies of the storage system.

Thus, performing ECC on the controller would create significant
data movement overheads, negating potential speedups. In order
to: (i) eliminate such overheads and (ii) allow error-free in-plane
embedding distance calculation without ECC, REIS employs Hy-
bridSSD [247, 286, 308, 332] techniques in the ANNS engine. Specif-
ically, we employ soft partitioning to create (i) a robust, non-ECC
Single Level Cell (SLC) partition for storing binary embeddings, and
(ii) a typical, high-density TLC partition that stores the database’s
document chunks and embeddings that are not processed within
the planes (e.g INT8 embeddings for reranking). To further improve
the robustness of the SLC partition, REIS makes use of the Enhanced
SLC-mode Programming (ESP) [224], which maximizes the margin
between the voltage ranges of the values in SLC, achieving zero
BER without ECC. As an added benefit, SLC programming slightly
enhances RAG performance due to decreased read latency of SLC
compared to TLC [247].

4.1.3 Embedding-Document Linkage. While the database layout of
Sec. 4.1.1 can increase performance by separating the frequently
accessed embeddings from the less frequently accessed document
chunks, performing document retrieval requires a connection be-
tween the two. To achieve this, REIS employs a low-cost linkage
mechanism within the storage system that associates each embed-
ding with the address of its corresponding document chunk.

Modern NAND flash memory provisions some storage space for
ECC bits known as the Out-Of-Band (OOB) area (e.g., 2208 spare
bytes for each 16KB page [230, 236]). During each page read, the
page buffer loads OOB data together with the page. We re-purpose
a small portion of the OOB area to store the address of the docu-
ment chunk that is associated with each embedding (3 in Fig. 4).
For example, assuming a dataset where (i) each embedding and
document chunk occupies 4KB (i.e., a sub-page [159]) and (ii) each
document chunk requires a 4-byte address, linking embeddings to
documents requires 16 spare bytes (or 0.7% of the OOB area) for
each page. This approach ensures that whenever an embedding is
loaded to the page buffer, the address of its associated document
chunk is also loaded. Therefore, when the storage system conducts
distance computation for a page of embeddings using the mecha-
nisms proposed in Sec. 4.3, the addresses of associated document
chunks are available in the page buffer for document identifica-
tion and retrieval. Our proposed mechanism eliminates the need to
maintain a specialized data structure for document retrieval with
minimal space overhead to the storage system.

4.1.4 Coarse-Grained Access. With the aim of (i) distinguishing be-
tween different RAG datasets in the storage system and (ii) reducing
the frequent address translation overheads when accessing embed-
dings, REIS introduces a coarse-grained access scheme. Specifically,
REIS stores an address information entry for each region of the
database in the internal DRAM. Each entry includes an integer
index as the distinct signature of a database and the addresses of
the first and last entries of the embedding and document regions.
The coarse-grained access scheme enables database management in
two ways. First, during database deployment, the storage system re-
serves two non-overlapped and consecutive regions and creates the
address entries based on the size of a database before deploying the
database to the storage system. In this way, we ensure the isolation
of the database from other user data or databases. Second, during a

1177

ISCA ’25, June 21–25, 2025, Tokyo, Japan Chen et al.

database search operation, the storage system finds the starting em-
bedding address of a database through the address entry to start the
retrieval process. For each upcoming page read, the SSD controller
infers the next address to read by incrementing the current address,
instead of frequently invoking the address translation using the
L2P mapping table. To ensure data integrity, REIS retains page-level
FTL metadata, which contain essential information for operations
such as refresh and wear-leveling. This metadata is used for: (i)
writes during database initialization and (ii) periodic maintenance
operations such as data refresh, which however are rare (e.g., once
a year [207]). After these operations, FTL metadata is flushed from
the SSD’s DRAM.

Coarse-grained access eliminates the need to maintain the page-
level FTL for both regions of the database after deployment, conserv-
ing the valuable space of the internal DRAM for other operations
(see Sec. 4.3). For example, for a 1TB vector database that originally
demands 1GB for page-level FTL [99, 296, 341], the maintenance
cost for addressing is reduced to 21 bytes. Since REIS is designed
with the aim of serving potentially many different RAG databases,
we store the necessary information (i.e., the integer index of the
database, the entries of the first/last entries in the embedding and
document regions) in a small array in the SSD Controller’s DRAM.
This structure is called R-DB (A in Fig. 4) and serves as a record
of deployed databases. A potential downside of coarse-grained ac-
cess is that it requires the existence of a large contiguous block of
storage, which may necessitate defragmentation operations during
database deployment. However, this is an initial upfront overhead
that can be amortized over time.

4.2 ISP-Friendly ANNS Algorithms
Apart from graph-based ANNS algorithms used by prior works [115,
195, 299], two other types of mainstream ANNS algorithms exist:
cluster-based (e.g., Inverted File (IVF) [63, 343]) and hash-based
algorithms (e.g., Locality Sensitive Hashing (LSH) [68]). With the
aim of selecting the most suitable algorithms for our system, we per-
form a qualitative comparison, measuring throughput and recall on
a CPU-based system (described in Table 3). Specifically, we compare
the performance of IVF, HNSW, and LSH on thewiki_en dataset [61]
using the Cohere [239] embedding model and the FAISS [72] library.
We measure throughput in Queries per Second (QPS) and normalize
it to that of exhaustive search. We first evaluate the performance of
different implementations without quantization. Figure 5 demon-
strates that: (i) HNSW is the best performing base (i.e., without
quantization) algorithm, (ii) both HNSW and IVF provide up to 0.99
recall, and (iii) LSH is the worst performing algorithm, with lower
performance than exhaustive search (result) for recall values above
0.8 (1.2× slower for Recall@10=0.9).

Since ISP hardware has limited capabilities (e.g., lack of floating-
point support [13]), ISP-based ANNS requires quantization. For this
reason, in Fig. 5 we also analyze the performance of IVF and HNSW
when using Binary Quantization (BQ) and Product Quantization
(PQ), combined with reranking [239]. We make four key observa-
tions: (i) IVF recall remains high even with BQ (PQ) at 0.97 (0.96),
(ii) PQ performs worse than BQ and even floating-point IVF, (iii)
IVF throughput increases significantly with BQ, and (iv) HNSW
throughput remains constant with BQ, while still outperforming

0.80 0.85 0.90 0.95 1.00
Recall

10
0

10
1

10
2

10
3

N
or

m
al

iz
ed

 Q
P

S

IVF (nlist = 16384)
BQ IVF (nlist = 16384)

HNSW (M=128)
BQ HNSW (M=128)

LSH
PQ IVF (nlist = 16384)

Figure 5: Comparison of ANNS algorithms in terms of
throughput and recall running on CPU. For IVF, nlist de-
notes the number of clusters for a dataset. For HNSW, M
denotes the number of neighbors for each vertex.

IVF by approximately 3×. While these observations suggest that
both HNSW and IVF are compelling options for ANNS-based RAG,
graph-based algorithms (e.g. HNSW) feature irregular access pat-
terns [75, 76] that underutilize the internal bandwidth of the SSD,
making them unsuitable for ISP. In contrast, IVF performs searches
in contiguous data, exhibiting streaming access patterns. We thus
select IVF as our algorithm of choice, and perform modifications to
our database layout that support its execution.

4.2.1 IVF-tailored Database Layout. In order to accelerate retrieval,
REIS employs ANNS via the Inverted File (IVF) algorithm. As will
be shown in Sec. 4.3, REIS uses IVF with quantization and rerank-
ing, which requires storing data in both binary and INT8 precision.
To efficiently support IVF with these optimizations, we modify
the database layout of Sec. 4.1 in three ways. First, we divide the
embedding region into three sub-regions, one for storing cluster
centroids, and two other regions for storing embeddings in binary
and INT8 precision, respectively. Second, to facilitate IVF search
operations, we create an array which serves as a record of all clus-
ters. Each element of the array corresponds to an IVF cluster and
contains: (i) the address of the cluster centroid, (ii) the index of
the first and the last embedding within the cluster and (iii) a 8-
bit tag associated with the cluster. We name this array R-IVF (B)
and store it in the SSD’s DRAM, resulting in a memory footprint
of 𝑁𝑢𝑚𝑏𝑒𝑟_𝑜 𝑓_𝑒𝑛𝑡𝑟𝑖𝑒𝑠 × 15𝐵. Third, we extend the Embedding-
Document Linkage of Sec. 4.1.3 in two distinct ways. (I) In order to
link binary embeddings to their INT8 counterparts for reranking,
apart from the document address corresponding to each embedding,
we also store the address of the INT8 embedding (RADR) in the
OOB region. (II) For reasons that will become apparent in Sec. 4.3,
we store the 8-bit tag of the cluster in the OOB area of the page
that contains the cluster centroid.

Supporting IVF also requires allocating data structure in the
SSD Controller’s DRAM. Specifically, during IVF operations REIS
maintains lists containing (i) clusters and (ii) embedding vectors as
well as their distances from the query embedding. These structures
are called Temporal Top Lists (TTL) (C in Fig. 4) and as will be
shown in Sec. 4.3 are employed in our In-Storage ANNS Engine.

4.3 In-Storage ANNS Engine
Prior ISP-based ANNS accelerators [178, 192, 299] commonly in-
tegrate Multiple-Accumulate (MAC) units to compute Euclidean

1178

REIS: A High-Performance and Energy-Efficient Retrieval System with In-Storage Processing ISCA ’25, June 21–25, 2025, Tokyo, Japan

distance [12, 15] for ANNS. Introducing such changes to the storage
system creates (i) significant power and area overheads, and (ii)
adoption issues due to the intrusive nature of such modifications.
As explained in Sec. 2.2, there exist opportunities to reduce com-
putational overhead of ANNS, while retaining accuracy. Recent
studies [135, 209, 212, 239, 260] have shown that Binary Quantiza-
tion (BQ) can achieve a recall of 96%, due to the large dimensionality
of text embeddings [20, 158, 160, 164, 202, 211, 212, 292, 293]. With
REIS, our goal is to avoid the power and area overheads of prior
designs. To this end, we design an In-Storage ANNS engine based
on BQ which (i) utilizes only existing components within the SSD
system to perform retrieval, (ii) exploits the plane-level, die-level,
and channel-level parallelism of the storage system, and (iii) incor-
porates two major optimizations, distance filtering and pipelining.

4.3.1 Search Process. The search process for the Inverted File algo-
rithm (IVF) [63, 343] consists of two steps, a coarse- and fine-grained
search. First, in the coarse-grained search, REIS searches through all
cluster centroids to identify those closest to the query embedding.
To achieve this, REIS starts by reading and calculating the distance
for all embeddings stored in one page. For each embedding, it then
creates an entry consisting of the distance value (DIST), embed-
ding (EMB), embedding address (EADR), and the associated tag
(TAG). It sends these entries to a table, the Temporal Top List for
Centroids (TTL-C), which resides in the SSD’s DRAM. After filling
the TTL-C for each page read, the embedded cores of the SSD con-
troller execute a quickselect kernel [191] on the distance numbers,
identifying the entries that correspond to the N nearest clusters
to the query. Quickselect has an average time complexity of 𝑂 (𝑁)
and finds the k-th smallest element in an unordered array, simulta-
neously selecting the 𝑘 smallest elements in the process without
sorting them. At the same time, the storage system reads the next
page of centroids and conducts distance computations to hide the
latency of selection. Each iteration consists of (i) a page read, (ii)
distance computations, and (iii) embedding selection, updating the
TTL-C with the new closest clusters. After the last iteration, REIS
selects the nearest clusters according to the finalized TTL-C. In
the second step, REIS conducts a fine-grained search inside the
clusters identified in the first step. The fine-grained search has two
major differences compared to the coarse-grained search. (i) Instead
of forming the TTL entry using TAG, for the fine-grained search,
each TTL entry consists of DIST, EMB, RADR, and the address
of the associated document (DADR). We name the table for the
fine-grained search Temporal Top List for Embeddings (TTL-E). (ii)
After the last iteration of selecting the k nearest embeddings to
the query, the storage system performs quicksort [102] to obtain a
distance-ordered top-𝑘 list for the query.

4.3.2 Retrieval architecture and execution. Document retrieval is
performed by the ANNS engine, which (i) receives the query embed-
ding from the host system, (ii) computes the distance between the
query embedding and database embeddings, and returns the top-k
results. Fig. 6 breaks down REIS’s execution flow in nine steps.

The execution flow begins with the reception of a new query
by the storage system, which is placed in the SSD’s DRAM and
which triggers the execution of the ANNS kernel (steps 2 - 8).
The storage system first transfers the query embedding from the
DRAM to the data buffer in each NAND Flash plane 1 and then

Embedded
Processor

Plane #1
Page

Embedded
Processor

Embedded
Processor

Embedded
Processor

SSD Controller

Flash
Controller

Flash
Controller

…

Channel

Cache Latch

Data Latch

Page Buffer

Sensing Latch

D
ie

D
ie… D
ie

D
ie……

Cache Latch

Data Latch

Sensing Latch

DRAM

Temporal Top List

QUERY_ID DIST EMB DADR RADR

QuickSelect

Reranking

Quicksort

User Data Out-Of-Band

Binary Embeddings
Document Addresses

Rescoring Addresses

D
ie

D
ie

D
ie

D
ie

…

Channel

……

Pass-Fail
Checker

Fail-Bit
Counter

Plane #0
Page Buffer

Peripheral
Logic

6

21

Page

3

4

5

7

8

Host
PCIe9

Figure 6: REIS’s In-Storage ANNS Engine

writes multiple copies of the data, filling the whole Cache Latch
(CL). These copies are aligned to the database embeddings in order
to enable bitwise operations, as will be described in step 3 . We
refer to this step as Input Broadcasting (IBC). After IBC each CL
holds N duplicates, where N = Page_Size / Embedding_Size. In step
2 , the storage system issues a page read command to each plane,
loading a page of database embeddings to the Sensing Latch (SL).
By performing an XOR operation between the CL (which stores
the query embedding) and the SL (which now stores the database
embeddings), and storing the result in the Data Latch (DL) 3 , each
plane calculates the bitwise difference of the query and the database
embeddings. Next, in step 4 , we employ the fail-bit counter [48, 52,
203] within the peripheral logic to measure the number of logical
ones in the DL, which corresponds to the distance between the
query and the database embeddings.

The data that is transferred out from the flash dies to the SSD
Controller’s DRAM changes depending on whether the steps 1 - 4
are executed during coarse- or the fine-grained search. For coarse-
grained search, the ANNS engine transfers the (i) the embedding
vector (EMB), (ii) its calculated distance (DIST), and (iii) the tag of
the cluster that this embedding belongs to, forming a single entry.
For fine-grained search, instead of transferring the tag of the cluster,
the ANNS engine transfers (iv) the addresses of the INT8 version
of the embeddings (RADR), and (v) the correlated document chunk
address (DADR). Steps 2 - 4 are repeated until the whole database
is searched. The SSD controller retrieves distance numbers from
the TTL and performs quickselect [103] using the embedded core
6 , selecting the 10𝑘 embeddings closest to the query. In step 7 ,
the embedded core of the SSD controller executes the reranking
kernel [135, 239, 312]. Reranking performs a costlier but more ac-
curate search on the subset of data elements that are selected by
ANNS. Rerankers usually (i) employ cross-encoder models that
accurately calculate the similarity between queries and document
chunks [40, 216], or (ii) recalculate distances with higher precision
(e.g., INT8) [260]. REIS uses the second approach: ANNS is per-
formed using Binary Quantization, while reranking is performed
using INT8 embeddings. For reranking, the embedded core first
fetches the top-10𝑘 embeddings from the INT8 embedding region
using the RADR. It then recalculates the distances in INT8 precision
and sorts them using quicksort [102] 8 to finally select the top-𝑘
embeddings, which ends the search process. Once the ANNS search
is completed, the ANNS engine executes document identification to
find relevant document chunks according to the DADR of the top-k
results and transfers them to the host system 9 for generation.

1179

ISCA ’25, June 21–25, 2025, Tokyo, Japan Chen et al.

Exploiting SSD Parallelism. As described in Sec. 4.3.2, REIS uses
the buffers and the peripheral logic within the planes and the dies of
the storage system in order to perform distance computations. This
approach allows multiple simultaneous XOR and bit-counting op-
erations across planes and dies, exploiting the available parallelism
within the storage system. Once these computations have been
performed, the flash channels of the storage system collectively
provide massive internal bandwidth (e.g., 9.6 GB/s bandwidth for
an 8-channel system with 1.2 GB/s bandwidth per channel [47]),
which can efficiently transfer entries from the flash dies to the SSD
controller’s DRAM by leveraging the channel-level parallelism.
Fine-grained Embedding Access. To ensure fine-grained access
to each embedding, REIS introducesMini-Pages for addressing. REIS
composes aMini-Page address by appending an offset to the original
physical page address, filling each page with as many embeddings
as possible (e.g., 128 binary 1024-dimension embeddings per 16KB
page, leading to a 7-bit offset for the Mini-Page address). During
execution of the ANNS engine, REIS performs retrieval using the
Mini-Page address as the embedding address (EADR) for each entry
in the TTL.

4.3.3 Distance Filtering. We experimentally find that, for each
query, a significant fraction of document chunks within the data-
base are irrelevant (i.e., the distance between their embeddings and
the query embedding is very large). For example, various retrieval
tasks, such as fact-checking [276], retrieve only 1.2-3.0 relevant doc-
ument chunks per query on average from the BEIR datasets [274].
To avoid forwarding irrelevant data to the SSD controller, we em-
ploy distance filtering, which discards database embeddings when
their distance from the query embedding exceeds a certain thresh-
old. By discarding highly irrelevant queries, distance filtering (i)
conserves SSD channel bandwidth, and (ii) reduces the number of
entries that the SSD controller has to select and sort.

We introduce a modification to step 4 with which we apply dis-
tance filtering to the ANNS kernel. To determine suitable thresholds,
we perform filtering experiments on 4 BEIR [59] datasets targeting
different retrieval tasks: HotpotQA [320], NQ [154], FEVER [276],
and Quora [64]. We make two observations: First, for HotpotQA
we can filter out 99% of the documents and still retrieve the k=10
most relevant ones for each query. Second, the choice of filtering
threshold only weakly depends on the dataset size. For 𝑘 = 10, the
threshold would only be 1.6% higher for the biggest dataset, FEVER
compared to the smallest, Quora. We conclude that (i) distance fil-
tering significantly reduces the number of candidate embeddings
and thus computation, and (ii) it is possible to employ one filtering
threshold for effectively filtering datasets with different sizes.

We implement distance filtering using the comparator logic
within the flash dies (i.e., the pass/fail checker) [48, 52, 203], which
compares distance numbers with a pre-defined threshold. Each
embedding whose distance (DIST) value is below the threshold is
transferred to the SSD’s DRAM for further processing.

4.3.4 Pipelining. To further accelerate RAG retrieval, REIS exploits
three pipelining opportunities within the storage system. First,
REIS leverages the widely implemented Read Page Cache Sequential
mode [203], inside the flash chips, to overlap operations between
two iterations of steps 2 - 4 . Specifically, during step 4 , after the PL
transfers its data to the DL for readout, it can immediately read the

next page. Second, REIS overlaps distance calculation on the NAND
Flash dies with kernel execution on the embedded cores. According
to our evaluation, a single core can efficiently run Quicksort and
reranking without stalling the pipeline. Therefore, REIS only uses
one core for Quicksort and reranking, while the other cores (e.g.,
3 out of 4 [249, 251]) are still available for regular SSD operations.
Third, during IBC (see Sec. 4.3.2), REIS enables all planes per die
to receive the input query from the die I/O simultaneously, an
optimization that we name Multi-Plane IBC (MPIBC). This reduces
the IBC latency by a factor equivalent to the number of planes
per die. We assume the plane selection is handled by a dedicated
Multiplexer logic within the die periphery. Therefore, enabling
MPIBC requires raising the select signal for all planes together so
that they can receive the input query embedding concurrently.

4.4 System Integration of REIS
To enable communication with the host, REIS introduces an Ap-
plication Programming Interface (API) that defines RAG-specific
extensions to the NVM command set [218]. Similarly, to support
the operations described in Sec. 4.3, REIS extends the NAND flash
command set with commands that enable communication between
the controller and the flash dies.

4.4.1 Application Programming Interface. REIS specifies a high-
level API for the host system to perform the indexing and the
retrieval stage of the RAG workflow. To achieve this, we extend
the NVM command set [218] with custom REIS operations. The
specification provides a range (80ℎ-𝐹𝐹ℎ) in the opcode values for
vendor-specific commands, which are adequate for implementing
all REIS operations. To perform indexing, the host system issues
DB_Deploy() (or IVF_Deploy()) to the SSD. REIS reserves the re-
quired space in the NAND Flash memory according to the API and
performs de-fragmentation operations to create a physical conti-
guity. It then waits for the host to write the database content to
the DRAM, which it subsequently writes to storage as explained
in Sec. 4.1. When REIS receives Search() (or IVF_Search()) from the
host system, it performs retrieval and returns a done signal once
it has identified the document chunks to be retrieved. Once the
host system acknowledges the signal, the storage system starts to
transfer the identified document chunks to the host system. Table 1
describes each API command.

4.4.2 NAND Flash Command Set. REIS adds new commands to
the NAND flash die control logic to support the operations of the
in-storage ANNS engine for retrieval tasks. To enable this, the
controller first receives the previously described API commands
and translates them into the flash command set. It then issues
the flash commands to the flash dies to perform the necessary
operations. The control logic within each flash die is a finite-state
machine, which receives the commands and uses them to control
the peripheral logic in the flash array. Table 2 describes the NAND
flash command set extensions for querying the database.

5 Methodology
Evaluated SystemConfigurations.We evaluate REIS on two SSD
configurations,REIS-SSD1 andREIS-SSD2, based on two commer-
cial SSD products, Samsung PM9A3 [250] and Micron 9400 [207].

1180

REIS: A High-Performance and Energy-Efficient Retrieval System with In-Storage Processing ISCA ’25, June 21–25, 2025, Tokyo, Japan

Table 1: REIS Application Programming Interfaces

API Commands Description

DB_Deploy(DB, Did, N)
Write the N -entry database DB, with ID
Did to storage.

IVF_Deploy(DB, Did, N, CI)
Write the N -entry IVF-based database
DB, with ID Did to storage. CI contains
information on the IVF clusters.

Search(Q, Qid, Did, k)
Perform a top-k search for a batch of
queries Q, indexed by Qid, in the data-
base with ID Did.

IVF_Search(Q, Qid, Did, k, R)
Perform a top-k IVF search for a batch of
queriesQ, indexed byQid, in the database
with ID Did. The target accuracy is R.

Table 2: NAND Flash Command Set Extensions

ISA Format Description

IBC Q_EMB
Send a copy of the query (Q_EMB) to each page buffer
of the NAND Flash memory. (Input Broadcasting)

XOR ADR_P
Perform the XOR operation between PL and CL of a
plane (addressed by ADR_P).

GEN_DIST EADR
Compute the distance for a database embedding
stored at address EADR.

RD_TTL EADR
Transfer the TTL entry for the embedding stored at
EADR to the SSD DRAM.

These SSDs focus on low cost and high performance, respectively.
As a baseline for document retrieval, we use a high-end server
equipped with an AMD EPYC 9554 CPU [9] and a Samsung PM9A3
SSD [250]. Table 3 provides the properties of our SSDs and the
baseline CPU system (CPU-Real). To highlight the improvements
stemming from our database layout and In-Storage Processing, we
first compare REIS and CPU-Real using brute force search (BF).
We then compare REIS and CPU-Real on Approximate Nearest
Neighbor Search. Since (i) the loading time makes up the biggest
fraction of the execution time (see Sec. 3.2), and (ii) HNSW indexes
take up significantly more space than IVF ones, IVF outperforms
HNSW when loading time is taken into account. We evaluate both
REIS and CPU-Real with the IVF algorithm using BQ and reranking,
provided by the FAISS library [72], sweeping the accuracy of IVF
from 0.98 down to 0.9 𝑅𝑒𝑐𝑎𝑙𝑙@10. In order to perform a sensitivity
study, we introduce No-OPT as a baseline, a REIS configuration
that uses the In-Storage ANNS Engine without DF, PL, and MPIBC.
To quantify the performance overheads stemming from ANNS only,
we introduce an additional comparison point based on the CPU
baseline, which incurs zero overheads from data movement due
to storage I/O, called No-I/O. We additionally compare REIS to
two state-of-the-art designs, NDSearch [299] and ICE [106], which
use graph-based and cluster-based ANNS, respectively. To ensure
a fair comparison we make the appropriate modifications to our
experimental methodology whenever required.

Performance & Energy Evaluation. Our SSD operation model
and parameters are based on Flash-Cosmos [224] while the inter-
nal SSD DRAM is modeled using CACTI7 [18]. We use Zsim [252]
and Ramulator [57, 150] to simulate the embedded SSD controller
cores. We model SSD power consumption based on a commodity
product [249] and real chip characterization results from Flash-
Cosmos [224]. The power of the SSD’s internal DRAM and that of
the embedded cores are also derived from CACTI7 [18] and the char-
acteristics of a commodity embedded SSD controller processor [13],
respectively. We measure the power of CPU-Real using AMD 𝜇Prof
[10] for the CPU and a DDR4 model [86, 208] for DRAM.
EvaluatedDatasets.We evaluate two datasets from an information
retrieval benchmark [274],NQ andHotpotQA, a public dataset based
on wikipedia [61] (wiki_full) and its English subset (wiki_en). For
the comparison to NDSearch [299] we use two billion-scale datasets
that were used to evaluate NDSearch, SIFT1B and DEEP1B [265].

Table 3: Evaluated System Configurations

System Configuration

CPU-Real
CPU: 2 sockets, 128 cores, 3.1GHz [9];
DRAM: 1.5TB DDR4 [208]; SSD: PM9A3 [250]

REIS-SSD1

8 channels; 16 512Gb dies/channel; 2 planes;
1.2 GB/s channel bandwidth;
22.5µs tR (ESP-SLC) [224];
Embedded Cores: Cortex R8 [13]; 4 cores;

REIS-SSD2

16 channels; 8 512Gb dies/channel; 4 planes;
2.0 GB/s channel bandwidth;
22.5µs tR (ESP-SLC) [224];
Embedded Cores: Cortex R8 [13]; 4 cores;

6 Evaluation
We evaluate the effectiveness of REIS compared to different base-
lines. First, we evaluate the effectiveness of REIS at improving the
performance and energy efficiency of the retrieval stage of the RAG
pipeline. Second, we evaluate the effect of REIS on the performance
of the end-to-end RAG pipeline. Third, we conduct a sensitivity
study to analyze the effect of different optimization techniques in
REIS. Fourth, we compare REIS to two prior works [106, 299] that
use cluster- and graph-based ANNS algorithms, respectively.

6.1 Retrieval Performance & Energy Efficiency
Performance. Figure 7 shows the performance of REIS, measured
in Queries-per-Second (QPS) and normalized to CPU-Real.Wemake
three observations. First, REIS-SSD1 and REIS-SSD2 improve per-
formance over CPU-Real by an average of 13× with a maximum of
112×, demonstrating the benefit of alleviating the I/O bottleneck
of the RAG retrieval process. Second, REIS-SSD1 and REIS-SSD2
outperform No-I/O by an average of 1.8× with a maximum of 5.3×
due to the massive internal parallelism of storage systems that
REIS exploits. Third, REIS-SSD2 provides a 2.6× average speedup
over REIS-SSD1, with a maximum of 3.2×, reflecting the benefits of
higher channel counts (2×) and channel bandwidth (1.7×).
Energy Efficiency. Figure 8 presents the energy efficiency (QPS/W)
of REIS normalized to CPU-Real. We make two observations. First,

1181

ISCA ’25, June 21–25, 2025, Tokyo, Japan Chen et al.

1
10

100

0.98 0.94 0.90 0.98 0.94 0.90 0.98 0.94 0.90 0.98 0.94 0.90
BF IVF (Recall@10) BF IVF (Recall@10) BF IVF (Recall@10) BF IVF (Recall@10)

NQ HotpotQA wiki_en wiki_full

N
or

m
. Q

PS

No-I/O REIS-SSD1 REIS-SSD2

Figure 7: Performance (QPS) normalized to CPU-Real

1

10

100

0.98 0.94 0.90 0.98 0.94 0.90 0.98 0.94 0.90 0.98 0.94 0.90
BF IVF (Recall@10) BF IVF (Recall@10) BF IVF (Recall@10) BF IVF (Recall@10)

NQ HotpotQA wiki_en wiki_full

N
or

m
. Q

PS
/W

REIS-SSD1 REIS-SSD2

Figure 8: Energy efficiency (QPS/W) normalized to CPU-Real

REIS-SSD1 and REIS-SSD2 improve energy efficiency over CPU-
Real by 55× on average and up to 157×. This improvement in energy
efficiency fundamentally stems from the 29.7× lower power con-
sumption of SSDs compared to the CPU baseline on average. Second,
REIS-SSD2 provides 2.2× higher energy efficiency over REIS-SSD1
on average, with a maximum of 2.6×. This improvement in energy
efficiency is similar to REIS-SSD2’s performance improvement over
REIS-SSD1, suggesting that most of the energy efficiency gains
stem from the higher throughput of SSD2’s design.

6.2 End-to-End Performance Analysis
Table 4 breaks down the latency of different stages of the RAG
pipeline on REIS-SSD1 and on a CPU-based system using binary
quantization (i.e., the same system as in Fig. 3). Similarly to our anal-
ysis in Fig. 3, we use the HotpotQA and wiki_en datasets. Since REIS
performs retrieval within the storage system, it does not perform
the Dataset Loading step that transfers data to the host’s DRAM.
We observe that REIS reduces the combined latency of Dataset
Loading and Search from 20.3%-69.3% down to 0.02%-0.15%, which
demonstrates that REIS efficiently eliminates the data movement
bottleneck of RAG retrieval. When using REIS, Generation accounts
for 92% of the total time, which demonstrates that LLM inference is
now the new bottleneck. Overall, REIS reduces the average end-to-
end latency by 1.25× and 3.24× on HotpotQA and NQ, respectively.

6.3 Sensitivity Study
Fig. 9 presents a sensitivity study of all proposed optimizations
introduced by REIS, i.e., Distance Filtering (DF), Pipelining (PL)
and Multi-Plane Input Broadcasting (MPIBC) on top of No-OPT.
We choose wiki_full [61] as the dataset to analyze and normalize
results (i.e., QPS) to the performance of the CPU-Real. We make
three observations. First, among all proposed optimizations, DF
contributes the most to the speedup over No-OPT by an average of
4.7× and 5.7× and a maximum of 5.1× and 6.5× for REIS-SSD1 and
REIS-SSD2, respectively. The main source of this speedup is that

filtering out embeddings with large distances inside each NAND
flash die significantly reduces (i) unnecessary data movement to
the SSD controller’s DRAM, and (ii) the amount of data input to the
Quickselect kernel. Second, the benefit from PL increases for SSDs
with higher internal bandwidth due to more channels and higher
I/O rate. Specifically, in SSDs with high internal bandwidth (e.g.,
the 32GB/s of bandwidth for REIS-SSD2), pipelining can completely
overlap (i) reading a new page, and (ii) transferring out the filtered
TTL entries from the NAND flash dies to the SSD’s internal DRAM.
Third, the benefit from MPIBC increases for SSDs with more planes
per die. Specifically, the average speedup of DF+PL+MPIBC over
DF+PL is 6% and 26% for REIS-SSD1 and REIS-SSD2.

0

1

10
100

0.98 0.96 0.94 0.92 0.9

N
or

m
. Q

PS

Recall@10

REIS-SSD1

NO-OPT +DF +PL +MPIBC

0
1

10
100

0.98 0.96 0.94 0.92 0.9

N
or

m
. Q

PS

Recall@10

REIS-SSD2

NO-OPT +DF +PL +MPIBC

Figure 9: Effects of different REIS optimizations on through-
put (normalized to CPU-Real), evaluated on dataset [61].

Table 4: RAG Latency Breakdown for REIS and the CPU-
based system with Binary Quantization of Fig. 3.

HotpotQA NQ
Latency contribution (%) REIS CPU+BQ REIS CPU+BQ

Embedding Model Loading 3.26 2.61 3.26 1.01
Encoding 0.58 0.46 0.58 0.18
Dataset Loading N/A 20.0 N/A 67.3
Search (and retrieval for REIS) 0.02 0.29 0.15 2.00
Generation Model Loading 4.16 3.32 4.16 1.28
Generation 92.0 73.0 92.0 28.0

End-to-End Latency (s) 18.97 23.79 19.0 61.69

1182

REIS: A High-Performance and Energy-Efficient Retrieval System with In-Storage Processing ISCA ’25, June 21–25, 2025, Tokyo, Japan

1
10

100

0.98 0.94 0.90 0.98 0.94 0.90 0.98 0.94 0.90 0.98 0.94 0.90
BF IVF (Recall@10) BF IVF (Recall@10) BF IVF (Recall@10) BF IVF (Recall@10)

NQ HotpotQA wiki_en wiki_full

N
or

m
. Q

PS REIS-SSD1 REIS-SSD2

Figure 10: Speedup of REIS over ICE [106].

6.3.1 Comparison with REIS-ASIC. To quantify the performance
loss due to not using ESP (thus requiring ECC which incurs data
transfers to the SSD controller), we compare REIS against a new
scheme, REIS-ASIC, which: (i) instead of ESP, uses ECC performed
by the SSD controller, (ii) performs all other operations using an
ideal ASIC with no computational overhead but (iii) requires that
all data be transferred to the controller. REIS-ASIC experiences a
slowdown between 4.1×-5.0× (3.9×-6.5×) for SSD-1 (SSD-2), across
all recall values and datasets, due to the data movement overheads
introduced by the data transfers due to not using ESP.

6.4 Comparison to Prior Works
We compare the performance of REIS to two state-of-the-art ISP-
based ANNS accelerators, ICE [106] and NDSearch [299], which
use cluster- and graph-based algorithms, respectively.
Comparison to ICE. Fig. 10 shows the speedup of REIS com-
pared to ICE [106], a state-of-the-art ISP scheme for vector similar-
ity search. When using brute force (BF), REIS achieves a speedup
greater than 10× across all configurations. For IVF, the speedup
increases with higher recall values, demonstrating superior perfor-
mance to that of ICE. Specifically, across all datasets with SSD-2,
REIS outperforms ICE by an average of 7.1× (22.9×) at 0.90 (0.98)
recall@10. We also perform a comparison to ICE-ESP, an idealistic
implementation of ICE that does not require ECC, but still uses 4-bit
quantization (not shown in Fig. 10). Even compared to ICE-ESP,
REIS achieves a geomean speedup of 3.85× (3.92×) in BF for SSD-1
(SSD-2). When configured to target 0.9 recall@10 using IVF, REIS
achieves 2.08× (2.29×) higher performance over ICE-ESP, a number
that rises to 2.84× (3.18×) for 0.98 recall@10 for SSD-1 (SSD-2).
Comparison to NDSearch. Fig. 11 compares the performance
of REIS using IVF [72], against NDSearch using HNSW [195] and
DiskANN [115].We perform this comparison using two billion-scale
datasets, SIFT-1B and DEEP-1B [265], with 0.94 and 0.93 Recall@10,
respectively. We normalize the throughput of REIS to that of ND-
Search with HNSW and DiskANN and observe that it outperforms
NDSearch by an average of 1.7× with a maximum of 2.6×.

0

2

4

SIFT-1B (Recall@10=0.94) DEEP-1B (Recall@10=0.93)

N
or

m
. Q

PS

Speedup over ND-HNSW Speedup over ND-DiskANN

Figure 11: Performance comparison of REIS and NDSearch.

7 Discussion
In this section, we discuss potential extensions and optimizations
to REIS. First, we discuss augmenting REIS with filtered search on
user-defined metadata. Second, we address the impact of REIS on
typical SSD management operations and lifetime. Third, we provide
alternative implementations for REIS’s embedding-document link-
age which alleviate the logical to physical contiguity requirements.

7.1 Metadata Filtering
To improve generation qualitymodern LLM serving frameworks [37,
182] incorporate metadata filtering [229, 290, 301] to RAG retrieval.
Metadata filtering augments database entries with information such
as timestamps, author information, or other relevant metadata that
can be used during the search process to improve document re-
trieval. REIS could potentially be enhanced with this feature by
storing the metadata of each embedding in reserved NAND flash
memory (i.e., in the OOB region [319]).

To perform metadata filtering in a read-only database [124, 229],
this enhanced version of REIS: (i) assigns a corresponding metadata
tag (an integer number) to each embedding and (ii) places the tag in
the OOB area during database deployment. During RAG retrieval,
REIS receives the query embedding alongside a metadata tag and
compares it to the tags of each database embedding, using the
existing approach for calculating the embedding distance. Before
performing the subsequent retrieval steps, REIS checks the result of
the metadata computation, filtering out results that do not match.
For continuously updated databases providing real-time knowledge
retrieval [43, 44, 80, 134], REIS (i) periodically creates new databases
to store new information at a predefined frequency (e.g., every
hour), (ii) treats each sub-database as a normal database tagged
with an individual timestamp, (iii) maintains an entry for each
database in the internal DRAM, including the database address and
the timestamp. When the host sends a query with a requested time,
REIS identifies the corresponding databases to be searched by first
comparing the requested time with the timestamps stored in the
internal DRAM and then performs search and retrieval operations
within the identified databases.

7.2 Implications on the Storage System
Typical SSD operations.While REIS is primarily designed to accel-
erate RAG, it also serves as a conventional storage system. As such,
the SSD controller must handle routine maintenance tasks, such
as data refresh and garbage collection [132, 313, 317]. To ensure
uninterrupted execution of maintenance operations, we (i) confine
REIS to only one of the embedded cores of the SSD and (ii) prioritize
maintenance tasks over RAG operations when all cores are needed

1183

ISCA ’25, June 21–25, 2025, Tokyo, Japan Chen et al.

for maintenance. Since REIS primarily targets read-intensive RAG
workloads, write operations are expected to be infrequent, making
full core utilization a rare occurrence. To simplify the design, REIS
operates exclusively in either RAG-mode or normal SSD mode at
any given time. To switch between the two modes, it is necessary to
load the necessary FTL data (coarse-grained for RAG (see Sec. 4.1.4),
fine-grained for normal operations). Since REIS exclusively oper-
ates in one of the two modes, performance of normal read/write
operations from the host remains unaffected.
Impact on SSD Lifetime. Although REIS disables ECC in the SLC
partition to support in-die logic operations, this does not reduce
SSD lifetime for two reasons. First, using SLC-mode instead of MLC
inherently increases the distance between threshold voltages, en-
hancing flash memory cell reliability. Second, REIS employs ESP for
the SLC partition, which achieves a 0 BER [224], in a worst-case sce-
nario, (i.e., 1-year retention time, 10k Program/Erase cycles) [224].
Contiguity Requirements. Coarse grained access (i.e., the light-
weight L2P mapping scheme of Sec. 4.1.4) requires the existence of
contiguous unallocated physical space. In order to further reduce (i)
the memory footprint, and (ii) translation overheads stemming from
L2P metadata, REIS also uses the same contiguity-based approach
in the document region of the database. An alternative approach,
which does not require contiguity in the document region, would be
to link embeddings to the physical addresses of their corresponding
document chunks via the OOB area, enabling document chunks to
be placed anywhere in storage. However, this approach introduces
additional complexity as it entails updating the physical address in
the OOB region whenever the documents are remapped to another
region of the SSD (e.g., during updates).

8 Related Work
To our knowledge, REIS is the first system based on In-Storage
Processing (ISP) that accelerates the retrieval stage of Retrieval-
Augmented Generation (RAG). We have already qualitatively and
quantitatively compared REIS to two existing state-of-the-art ISP-
based ANNS accelerators [106, 299] in Section 6.4. In this section,
we discuss works that improve RAG from other perspectives and
relevant works for Nearest Neighbor Search Acceleration.

8.1 RAG Enhancements
Prior work has proposed various optimizations to the RAG pipeline.
RQ-RAG [34], a representative prompt engineering [34, 83, 140, 294]
method, decomposes complex queries and disambiguates queries
with more than one possible interpretation. Small-to-Big Retrieval
[318], an improved document chunking strategy [157, 235, 275],
uses small document chunks for the retrieval search and returns
bigger chunks covering the same context. Hybrid approaches incor-
porate dense retrieval with sparse retrieval to capture both semantic
and lexical similarity between query and documents [187, 297], or
combine database search with web search when the knowledge
base cannot provide relevant information [314].

8.2 Nearest Neighbor Search Acceleration
Due to the widespread adoption of ANNS to billion-scale recom-
mendation systems [79, 81, 108, 170, 330, 333], recent works have
proposed dedicated libraries [70, 72, 268] and optimized algorithms

[23, 194, 195, 213, 288] to improve its performance. These works im-
prove the performance of ANNS through various optimizations
for processor-centric systems. Since these optimizations target
processor-centric systems, they cannot overcome the I/O data move-
ment bottleneck that REIS aims to alleviate.

Various ANNS hardware accelerators [92, 113, 138, 178, 220,
242, 277, 299, 310, 327, 342] leverage approaches such as mem-
ory expansion [113, 242] and multi-node parallelism. [92, 277, 327].
Processing-in-Memory techniques (PIM) have also been explored
for accelerating Nearest Neighbor Search. For example, [232] pro-
poses a CXL-based device that places vector product accelerators
near LPDDR memory, aiming to improve the performance of Ex-
act Nearest Neighbor Search (ENNS). In [231], Qin et al. leverage
the properties of Non-Volatile Memory technologies to perform
matrix-vector multiplication in the analog domain and accelerate
RAG pipelines in edge devices. Despite performance improvements,
DRAM-based approaches either fail to fundamentally address the
I/O data movement bottleneck from storage or incur significant
costs to serve large datasets.

9 Conclusion
We introduce REIS, a new retrieval system tailored to Retrieval-
Augmented Generation based on In-Storage Processing. REIS im-
proves performance and energy efficiency, by leveraging the ex-
isting computational resources within the storage system. REIS
comprises three key mechanisms dedicated to RAG: (i) a vector
database layout builds the correlation between embeddings and
documents to enable efficient document retrieval for ISP systems,
(ii) algorithmic support customized for the ISP-friendly Inverted
File algorithm to improve retrieval performance, (iii) an in-storage
Approximate Nearest Neighbor Search (ANNS) engine to efficiently
execute the ANNS kernel. Our evaluation shows that REIS sig-
nificantly outperforms both (i) a modern CPU-based system for
document retrieval and (ii) two state-of-the-art ISP-based ANNS
accelerators. We believe and hope that REIS will inspire further
research in In-Storage Processing, both in RAG and beyond.

Acknowledgments
We sincerely thank Andreas Kosmas Kakolyris for his very signifi-
cant contributions to the work during and after the rebuttal process.
Andreas should be a major co-author of the published ISCA 2025
version of this paper, but due to the policy dictated by the ISCA
leadership, which we, as all co-authors, wholeheartedly disagree
with and find very problematic and unethical, he was not allowed to
be a co-author. We thank the anonymous reviewers of ISCA 2025 for
feedback. We thank the SAFARI Research Group members for feed-
back and the stimulating intellectual environment they provide. We
acknowledge the generous gifts from our industrial partners, includ-
ing Google, Huawei, Intel, and Microsoft. This work is supported
in part by the ETH Future Computing Laboratory (EFCL), Huawei
ZRC Storage Team, Semiconductor Research Corporation (SRC),
AI Chip Center for Emerging Smart Systems (ACCESS), sponsored
by InnoHK funding, Hong Kong SAR, and European Union’s Hori-
zon programme for research and innovation [101047160 - BioPIM].
Jisung Park was supported by the National Research Foundation of
Korea (RS-2024-00347394, RS-2024-00415602, RS-2024-00459026).

1184

REIS: A High-Performance and Energy-Efficient Retrieval System with In-Storage Processing ISCA ’25, June 21–25, 2025, Tokyo, Japan

References
[1] 2004. FastBit: An Efficient Compressed Bitmap Index Technology. https://sdm.

lbl.gov/fastbit/.
[2] AnuragAcharya,Mustafa Uysal, and Joel Saltz. 1998. Active Disks: Programming

Model, Algorithms and Evaluation. ASPLOS (1998).
[3] Nitin Agrawal, Vijayan Prabhakaran, Ted Wobber, John D Davis, Mark Manasse,

and Rina Panigrahy. 2008. Design Tradeoffs for SSD Performance. In USENIX
ATC.

[4] Minseon Ahn, Andrew Chang, Donghun Lee, Jongmin Gim, Jungmin Kim,
Jaemin Jung, Oliver Rebholz, Vincent Pham, Krishna Malladi, and Yang Seok Ki.
2022. Enabling CXL memory expansion for in-memory database management
systems. In Proceedings of the 18th International Workshop on Data Management
on New Hardware. 1–5.

[5] Voyage AI. 2024. voyage-multilingual-2: Multilingual Embedding Model.
https://blog.voyageai.com/2024/06/10/voyage-multilingual-2-multilingual-
embedding-model/

[6] Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico
Lebrón, and Sumit Sanghai. 2023. Gqa: Training generalized multi-query trans-
former models from multi-head checkpoints. arXiv preprint arXiv:2305.13245
(2023).

[7] Mohammadamin Ajdari, Pyeongsu Park, Joonsung Kim, Dongup Kwon, and
Jangwoo Kim. 2019. CIDR: A Cost-effective In-line Data Reduction System for
Terabit-per-second Scale SSD Arrays. In HPCA.

[8] Amazon Web Services. 2024. Build a RAG data ingestion pipeline for large-
scale ML workloads. https://aws.amazon.com/blogs/big-data/build-a-rag-data-
ingestion-pipeline-for-large-scale-ml-workloads/.

[9] AMD. 2023. EPYC™ 9554. https://www.amd.com/en/products/processors/
server/epyc/4th-generation-9004-and-8004-series/amd-epyc-9554.html

[10] AMD. 2024. AMD® 𝜇Prof. https://www.amd.com/en/developer/uprof.html
[11] Laurent Amsaleg and Hervé Jégou. 2010. Datasets for approximate nearest

neighbor search. http://corpus-texmex.irisa.fr/
[12] David C Anastasiu and George Karypis. 2015. L2knng: Fast exact k-nearest

neighbor graph construction with l2-norm pruning. In Proceedings of the 24th
ACM International on Conference on Information and Knowledge Management.
791–800.

[13] Arm. 2016. Cortex-R8. https://www.arm.com/products/silicon-ip-cpu/cortex-
r/cortex-r8

[14] Arm. 2020. Arm Storage Solution for SSD Controllers. https:
//armkeil.blob.core.windows.net/developer/Files/pdf/solution-brief/arm-
storage-solution-for-ssd-solutions-brief.pdf

[15] Sunil Arya, David MMount, Nathan S Netanyahu, Ruth Silverman, and Angela Y
Wu. 1998. An optimal algorithm for approximate nearest neighbor searching
fixed dimensions. Journal of the ACM (JACM) 45, 6 (1998), 891–923.

[16] Kumar Ashutosh, Rohit Girdhar, Lorenzo Torresani, and Kristen Grauman. 2023.
Hiervl: Learning hierarchical video-language embeddings. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 23066–23078.

[17] Duck-Ho Bae, Jin-Hyung Kim, Sang-Wook Kim, Hyunok Oh, and Chanik Park.
2013. Intelligent SSD: A Turbo for Big Data Mining. In CIKM.

[18] Rajeev Balasubramonian, Andrew B Kahng, Naveen Muralimanohar, Ali Shafiee,
and Vaishnav Srinivas. 2017. CACTI 7: New tools for interconnect exploration
in innovative off-chip memories. ACM Transactions on Architecture and Code
Optimization (TACO) 14, 2 (2017), 1–25.

[19] Scott Beamer, Krste Asanovic, and David Patterson. 2012. Direction-Optimizing
Breadth-First Search. In SC.

[20] Parishad BehnamGhader, Vaibhav Adlakha, Marius Mosbach, Dzmitry Bah-
danau, Nicolas Chapados, and Siva Reddy. 2024. Llm2vec: Large language
models are secretly powerful text encoders. arXiv preprint arXiv:2404.05961
(2024).

[21] Maciej Besta, Raghavendra Kanakagiri, Grzegorz Kwasniewski, Rachata
Ausavarungnirun, Jakub Beránek, Konstantinos Kanellopoulos, Kacper Janda,
Zur Vonarburg-Shmaria, Lukas Gianinazzi, Ioana Stefan, et al. 2021. SISA: Set-
Centric Instruction Set Architecture for GraphMining on Processing-in-Memory
Systems. In MICRO.

[22] Simona Boboila, Youngjae Kim, Sudharshan S Vazhkudai, Peter Desnoyers, and
Galen M Shipman. 2012. Active Flash: Out-of-core Data Analytics on Flash
Storage . In MSST.

[23] Sebastian Bruch, Aditya Krishnan, and Franco Maria Nardini. 2024. Optimistic
Query Routing in Clustering-based Approximate Maximum Inner Product
Search. arXiv preprint arXiv:2405.12207 (2024).

[24] Davide Caffagni, Federico Cocchi, Nicholas Moratelli, Sara Sarto, Marcella Cor-
nia, Lorenzo Baraldi, and Rita Cucchiara. 2024. Wiki-LLaVA: Hierarchical
Retrieval-Augmented Generation for Multimodal LLMs. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 1818–1826.

[25] Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and OnurMutlu. 2017. Error
Characterization, Mitigation, and Recovery in Flash-Memory-Based Solid-State
Drives. Proc. IEEE (2017).

[26] Yu Cai, Saugata Ghose, Erich F Haratsch, Yixin Luo, and Onur Mutlu. 2017. Error
Characterization, Mitigation, and Recovery in Flash-Memory-Based Solid-State
Drives. Proc. IEEE (2017).

[27] Yu Cai, Saugata Ghose, Erich F Haratsch, Yixin Luo, and Onur Mutlu. 2018.
Errors in Flash-Memory-Based Solid-State Drives: Analysis, Mitigation, and
Recovery. In Inside Solid State Drives.

[28] Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and Onur Mutlu. 2018. Reli-
ability Issues in Flash-memory-based Solid-state Drives: Experimental Analysis,
Mitigation, Recovery. In Inside Solid State Drives (2nd ed.).

[29] Yu Cai, Saugata Ghose, Yixin Luo, Ken Mai, Onur Mutlu, and Erich F Haratsch.
2017. Vulnerabilities in MLC NAND Flash Memory Programming: Experimental
Analysis, Exploits, and Mitigation Techniques . In HPCA.

[30] Yu Cai, Erich F Haratsch, Onur Mutlu, and Ken Mai. 2012. Error Patterns in
MLC NAND Flash Memory: Measurement, Characterization, and Analysis. In
DATE.

[31] Yu Cai, Erich F Haratsch, Onur Mutlu, and Ken Mai. 2012. Error patterns in
MLC NAND flash memory: Measurement, characterization, and analysis. In
2012 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE,
521–526.

[32] Yu Cai, Gulay Yalcin, Onur Mutlu, Erich F. Haratsch, Adrian Cristal, Osman S.
Unsal, et al. 2012. Flash Correct-and-Refresh: Retention-Aware Error Manage-
ment for Increased Flash Memory Lifetime. In ICCD.

[33] HM Cao, F Liu, Q Wang, ZC Du, L Jin, and ZL Huo. 2022. An efficient built-in
error detection methodology with fast page-oriented data comparison in 3D
NAND flash memories. Electronics Letters 58, 12 (2022), 483–485.

[34] Chi-Min Chan, Chunpu Xu, Ruibin Yuan, Hongyin Luo, Wei Xue, Yike Guo,
and Jie Fu. 2024. Rq-rag: Learning to refine queries for retrieval augmented
generation. arXiv preprint arXiv:2404.00610 (2024).

[35] Chee-Yong Chan and Yannis E. Ioannidis. 1998. Bitmap Index Design and
Evaluation. In SIGMOD.

[36] Li-Pin Chang. 2010. A hybrid approach to NAND-flash-based solid-state disks.
IEEE Trans. Comput. 59, 10 (2010), 1337–1349.

[37] Harrison Chase. 2022. LangChain. https://github.com/langchain-ai/langchain
[38] Danqi Chen and Wen-tau Yih. 2020. Open-domain question answering. In Pro-

ceedings of the 58th annual meeting of the association for computational linguistics:
tutorial abstracts. 34–37.

[39] Jiawei Chen, Hongyu Lin, Xianpei Han, and Le Sun. 2024. Benchmarking large
language models in retrieval-augmented generation. In Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 38. 17754–17762.

[40] Jianlv Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu Lian, and
Zheng Liu. 2024. BGE M3-Embedding: Multi-Lingual, Multi-Functionality,
Multi-Granularity Text Embeddings Through Self-Knowledge Distillation.
arXiv:2402.03216 [cs.CL]

[41] Qi Chen, Bing Zhao, Haidong Wang, Mingqin Li, Chuanjie Liu, Zengzhong
Li, Mao Yang, and Jingdong Wang. 2021. Spann: Highly-efficient billion-scale
approximate nearest neighborhood search. Advances in Neural Information
Processing Systems 34 (2021), 5199–5212.

[42] Rihan Chen, Bin Liu, Han Zhu, Yaoxuan Wang, Qi Li, Buting Ma, Qingbo Hua,
Jun Jiang, Yunlong Xu, Hongbo Deng, et al. 2022. Approximate nearest neighbor
search under neural similarity metric for large-scale recommendation. In Pro-
ceedings of the 31st ACM International Conference on Information & Knowledge
Management. 3013–3022.

[43] Wenhu Chen, Xinyi Wang, and William Yang Wang. 2021. A dataset for answer-
ing time-sensitive questions. arXiv preprint arXiv:2108.06314 (2021).

[44] Qinyuan Cheng, Xiaonan Li, Shimin Li, Qin Zhu, Zhangyue Yin, Yunfan Shao,
Linyang Li, Tianxiang Sun, Hang Yan, and Xipeng Qiu. 2024. Unified Active
Retrieval for Retrieval Augmented Generation. arXiv preprint arXiv:2406.12534
(2024).

[45] Xin Cheng, Di Luo, Xiuying Chen, Lemao Liu, Dongyan Zhao, and Rui Yan.
2024. Lift yourself up: Retrieval-augmented text generation with self-memory.
Advances in Neural Information Processing Systems 36 (2024).

[46] Benjamin Y Cho, Won Seob Jeong, Doohwan Oh, and Won Woo Ro. 2013. XSD:
Accelerating MapReduce by Harnessing the GPU inside an SSD . In WoNDP.

[47] Jiho Cho, D Chris Kang, Jongyeol Park, Sang-Wan Nam, Jung-Ho Song, Bong-Kil
Jung, Jaedoeg Lyu, Hogil Lee, Won-Tae Kim, Hongsoo Jeon, et al. 2021. 30.3 A
512Gb 3b/Cell 7 th-Generation 3D-NAND Flash Memory with 184MB/s Write
Throughput and 2.0 Gb/s Interface. In 2021 IEEE International Solid-State Circuits
Conference (ISSCC), Vol. 64. IEEE, 426–428.

[48] Sungjun Cho, Beomjun Kim, Hyunuk Cho, Gyeongseob Seo, Onur Mutlu,
Myungsuk Kim, and Jisung Park. 2024. AERO: Adaptive Erase Operation for
Improving Lifetime and Performance of Modern NAND Flash-Based SSDs. In
Proceedings of the 29th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, Volume 3. 101–118.

[49] Taehee Cho, Yeong-Taek Lee, Eun-Cheol Kim, Jin-Wook Lee, Sunmi Choi, Se-
ungjae Lee, Dong-Hwan Kim, Wook-Ghee Han, Young-Ho Lim, Jae-Duk Lee,
et al. 2001. A Dual-Mode NAND Flash Memory: 1-Gb Multilevel and High-
Performance 512-Mb Single-Level Modes. JSSC (2001).

1185

ISCA ’25, June 21–25, 2025, Tokyo, Japan Chen et al.

[50] Wanik Cho, Jongseok Jung, Jongwoo Kim, Junghoon Ham, Sangkyu Lee, Yujong
Noh, Dauni Kim, Wanseob Lee, Kayoung Cho, Kwanho Kim, et al. 2022. A 1-Tb,
4b/Cell, 176-Stacked-WL 3D-NAND Flash Memory with Improved Read Latency
and a 14.8 Gb/mm2 Density. In ISSCC.

[51] Wanik Cho, Jongseok Jung, Jongwoo Kim, Junghoon Ham, Sangkyu Lee, Yujong
Noh, Dauni Kim,Wanseob Lee, Kayoung Cho, Kwanho Kim, Heejoo Lee, Sooyeol
Chai, Eunwoo Jo, Hanna Cho, Jong-Seok Kim, Chankeun Kwon, Cheolioona
Park, Hveonsu Nam, Haeun Won, Taeho Kim, Kyeonghwan Park, Sanghoon
Oh, Jinhyun Ban, Junyoung Park, Jaehyeon Shin, Taisik Shin, Junseo Jang,
Jiseong Mun, Jehyun Choi, Hyunseung Choi, Suna-Wook Choi, Wonsun Park,
Dongkvu Yoon, Minsu Kim, Junvoun Lim, Chiwook An, Hyunyoung Shirr,
Haesoon Oh, Haechan Park, Sungbo Shim, Hwang Huh, Honasok Choi, Seungpil
Lee, Jaesuna Sim, Kichana Gwon, Jumsoo Kim, Woopyo Jeong, Jungdal Choi,
and Kyo-Won Jin. 2022. A 1-Tb, 4b/Cell, 176-Stacked-WL 3D-NAND Flash
Memory with Improved Read Latency and a 14.8Gb/mm2 Density. In 2022 IEEE
International Solid-State Circuits Conference (ISSCC), Vol. 65. 134–135. https:
//doi.org/10.1109/ISSCC42614.2022.9731785

[52] Nayoung Choi and Jaeha Kim. 2020. Modeling and simulation of NAND flash
memory sensing systems with cell-to-cell Vth variations. In Proceedings of the
39th International Conference on Computer-Aided Design. 1–8.

[53] Wonil Choi, Myoungsoo Jung, Mahmut Kandemir, and Chita Das. 2018. Paral-
lelizing Garbage Collection with I/O to Improve Flash Resource Utilization. In
HPDC.

[54] Jack Choquette and Wish Gandhi. 2020. Nvidia a100 gpu: Performance &
innovation for gpu computing. In 2020 IEEE Hot Chips 32 Symposium (HCS).
IEEE Computer Society, 1–43.

[55] Jack Choquette, Wishwesh Gandhi, Olivier Giroux, Nick Stam, and Ronny
Krashinsky. 2021. Nvidia a100 tensor core gpu: Performance and innovation.
IEEE Micro 41, 2 (2021), 29–35.

[56] Ashish Chouhan and Michael Gertz. 2024. LexDrafter: Terminology Drafting for
Legislative Documents using Retrieval Augmented Generation. arXiv preprint
arXiv:2403.16295 (2024).

[57] CMU-SAFARI. 2015. Ramulator. https://github.com/CMU-SAFARI/ramulator.
git.

[58] Cohere. 2023. Introducing Embed v3. https://cohere.com/blog/introducing-
embed-v3

[59] Cohere. 2024. beir-embed-english-v3. https://huggingface.co/datasets/Cohere/
beir-embed-english-v3

[60] Cohere. 2024. wikipedia-2023-11-embed-multilingual-v3. https://huggingface.
co/datasets/Cohere/wikipedia-2023-11-embed-multilingual-v3

[61] Cohere. 2024. wikipedia-2023-11-embed-multilingual-v3-int8-binary.
https://huggingface.co/datasets/Cohere/wikipedia-2023-11-embed-
multilingual-v3-int8-binary

[62] Christian Monzio Compagnoni, Akira Goda, Alessandro S Spinelli, Peter Feeley,
Andrea L Lacaita, and Angelo Visconti. 2017. Reviewing the evolution of the
NAND flash technology. Proc. IEEE 105, 9 (2017), 1609–1633.

[63] Rickard Cöster and Martin Svensson. 2002. Inverted file search algorithms for
collaborative filtering. In Proceedings of the 25th annual international ACM SIGIR
conference on Research and development in information retrieval. 246–252.

[64] Kornél Csernai. 2017. First Quora Dataset Release: Question Pairs. https:
//quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs

[65] Tri Dao. 2023. Flashattention-2: Faster attention with better parallelism and
work partitioning. arXiv preprint arXiv:2307.08691 (2023).

[66] Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. 2022. Flashat-
tention: Fast and memory-efficient exact attention with io-awareness. Advances
in Neural Information Processing Systems 35 (2022), 16344–16359.

[67] Debendra Das Sharma, Robert Blankenship, and Daniel Berger. 2024. An intro-
duction to the compute express link (cxl) interconnect. Comput. Surveys 56, 11
(2024), 1–37.

[68] Anirban Dasgupta, Ravi Kumar, and Tamas Sarlos. 2011. Fast locality-sensitive
hashing. In Proceedings of the 17th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (San Diego, California, USA) (KDD ’11).
Association for Computing Machinery, New York, NY, USA, 1073–1081. https:
//doi.org/10.1145/2020408.2020578

[69] Jaeyoung Do, Yang-Suk Kee, Jignesh M Patel, Chanik Park, Kwanghyun Park,
and David J DeWitt. 2013. Query Processing on Smart SSDs: Opportunities and
Challenges. In ACM SIGMOD.

[70] Magdalen Dobson, Zheqi Shen, Guy E. Blelloch, Laxman Dhulipala, Yan Gu,
Harsha Vardhan Simhadri, and Yihan Sun. 2023. Scaling Graph-Based ANNS Al-
gorithms to Billion-Size Datasets: A Comparative Analysis. CoRR abs/2305.04359
(2023). https://doi.org/10.48550/arXiv.2305.04359 arXiv:2305.04359

[71] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn,
Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, et al. 2020. An image is worth 16x16 words:
Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929
(2020).

[72] Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvasy,
Pierre-Emmanuel Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou. 2024.

The Faiss library. arXiv:2401.08281 [cs.LG]
[73] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad

Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan,
et al. 2024. The llama 3 herd of models. arXiv preprint arXiv:2407.21783 (2024).

[74] EleutherAI. 2021. GPT-J 6B. https://huggingface.co/EleutherAI/gpt-j-6b
[75] Priyank Faldu, Jeff Diamond, and Boris Grot. 2019. A closer look at lightweight

graph reordering. In 2019 IEEE International Symposium on Workload Character-
ization (IISWC). IEEE, 1–13.

[76] Priyank Faldu, Jeff Diamond, and Boris Grot. 2020. Domain-specialized cache
management for graph analytics. In 2020 IEEE International Symposium on High
Performance Computer Architecture (HPCA). IEEE, 234–248.

[77] Minghui Fang, Shengpeng Ji, Jialong Zuo, Hai Huang, Yan Xia, Jieming Zhu, Xize
Cheng, Xiaoda Yang, Wenrui Liu, Gang Wang, et al. 2024. ACE: A Generative
Cross-Modal Retrieval Framework with Coarse-To-Fine Semantic Modeling.
arXiv preprint arXiv:2406.17507 (2024).

[78] Hakan Ferhatosmanoglu, Ertem Tuncel, Divyakant Agrawal, and Amr El Abbadi.
2001. Approximate nearest neighbor searching in multimedia databases. In
Proceedings 17th International Conference on Data Engineering. IEEE, 503–511.

[79] Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai. 2017. Fast approximate
nearest neighbor search with the navigating spreading-out graph. arXiv preprint
arXiv:1707.00143 (2017).

[80] Anoushka Gade and Jorjeta Jetcheva. 2024. It’s About Time: Incorporat-
ing Temporality in Retrieval Augmented Language Models. arXiv preprint
arXiv:2401.13222 (2024).

[81] Yukang Gan, Yixiao Ge, Chang Zhou, Shupeng Su, Zhouchuan Xu, Xuyuan
Xu, Quanchao Hui, Xiang Chen, Yexin Wang, and Ying Shan. 2023. Binary
Embedding-based Retrieval at Tencent. In Proceedings of the 29th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining. 4056–4067.

[82] Congming Gao, Xin Xin, Youyou Lu, Youtao Zhang, Jun Yang, and Jiwu Shu.
2021. ParaBit: Processing Parallel Bitwise Operations in NAND Flash Memory
Based SSDs. In MICRO.

[83] Luyu Gao, Xueguang Ma, Jimmy Lin, and Jamie Callan. 2022. Precise zero-shot
dense retrieval without relevance labels. arXiv preprint arXiv:2212.10496 (2022).

[84] Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai,
Jiawei Sun, and Haofen Wang. 2023. Retrieval-augmented generation for large
language models: A survey. arXiv preprint arXiv:2312.10997 (2023).

[85] Nika Mansouri Ghiasi, Mohammad Sadrosadati, Harun Mustafa, Arvid Goll-
witzer, Can Firtina, Julien Eudine, Haiyu Mao, Joël Lindegger, Meryem Banu
Cavlak, Mohammed Alser, et al. 2024. MegIS: High-Performance, Energy-
Efficient, and Low-Cost Metagenomic Analysis with In-Storage Processing.
arXiv preprint arXiv:2406.19113 (2024).

[86] Saugata Ghose, Tianshi Li, Nastaran Hajinazar, Damla Senol Cali, and Onur
Mutlu. 2019. Demystifying complex workload-DRAM interactions: An experi-
mental study. Proceedings of the ACM onMeasurement and Analysis of Computing
Systems 3, 3 (2019), 1–50.

[87] Sreyan Ghosh, Sonal Kumar, Chandra Kiran Reddy Evuru, Ramani Duraiswami,
and Dinesh Manocha. 2024. Recap: retrieval-augmented audio captioning. In
ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 1161–1165.

[88] Rohit Girdhar, Alaaeldin El-Nouby, Zhuang Liu, Mannat Singh, Kalyan Vasudev
Alwala, Armand Joulin, and Ishan Misra. 2023. Imagebind: One embedding
space to bind them all. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 15180–15190.

[89] Bob Goodwin, Michael Hopcroft, Dan Luu, Alex Clemmer, Mihaela Curmei,
Sameh Elnikety, and Yuxiong He. 2017. BitFunnel: Revisiting Signatures for
Search. In SIGIR.

[90] Google. 2024. Get multimodal embeddings. https://cloud.google.com/vertex-
ai/generative-ai/docs/embeddings/get-multimodal-embeddings

[91] Donghyun Gouk, Miryeong Kwon, Hanyeoreum Bae, Sangwon Lee, and My-
oungsoo Jung. 2023. Memory pooling with cxl. IEEE Micro 43, 2 (2023), 48–57.

[92] Fabian Groh, Lukas Ruppert, Patrick Wieschollek, and Hendrik PA Lensch. 2022.
Ggnn: Graph-based gpu nearest neighbor search. IEEE Transactions on Big Data
9, 1 (2022), 267–279.

[93] Boncheol Gu, Andre S Yoon, Duck-Ho Bae, Insoon Jo, Jinyoung Lee, Jonghyun
Yoon, Jeong-Uk Kang, Moonsang Kwon, Chanho Yoon, Sangyeun Cho, et al.
2016. Biscuit: A framework for near-data processing of big data workloads.
ACM SIGARCH Computer Architecture News 44, 3 (2016), 153–165.

[94] Boncheol Gu, Andre S. Yoon, Duck-Ho Bae, Insoon Jo, Jinyoung Lee, Jonghyun
Yoon, Jeong-Uk Kang, Moonsang Kwon, Chanho Yoon, Sangyeun Cho, et al.
2016. Biscuit: A Framework for Near-Data Processing of Big Data Workloads.
In ISCA.

[95] Aayush Gupta, Youngjae Kim, and Bhuvan Urgaonkar. 2009. DFTL: A Flash
Translation Layer Employing Demand-based Selective Caching of Page-level
Address Mappings. In ASPLOS.

[96] Zvika Guz, Manu Awasthi, Vijay Balakrishnan, Mrinmoy Ghosh, Anahita
Shayesteh, Tameesh Suri, and Samsung Semiconductor. 2014. Real-Time Ana-
lytics as the Killer Application for Processing-In-Memory. WoNDP (2014).

1186

REIS: A High-Performance and Energy-Efficient Retrieval System with In-Storage Processing ISCA ’25, June 21–25, 2025, Tokyo, Japan

[97] Kiana Hajebi, Yasin Abbasi-Yadkori, Hossein Shahbazi, and Hong Zhang. 2011.
Fast approximate nearest-neighbor search with k-nearest neighbor graph. In
Twenty-Second International Joint Conference on Artificial Intelligence.

[98] Nastaran Hajinazar, Geraldo F. Oliveira, Sven Gregorio, João Dinis Ferreira,
Nika Mansouri Ghiasi, Minesh Patel, Mohammed Alser, Saugata Ghose, Juan
Gómez-Luna, and Onur Mutlu. 2021. SIMDRAM: A Framework for Bit-Serial
SIMD Processing Using DRAM. In ASPLOS.

[99] Kyuhwa Han, Hyukjoong Kim, and Dongkun Shin. 2019. WAL-SSD: Address
remapping-based write-ahead-logging solid-state disks. IEEE Trans. Comput. 69,
2 (2019), 260–273.

[100] Weidong He, Zhi Li, Hao Wang, Tong Xu, Zhefeng Wang, Baoxing Huai,
Nicholas Jing Yuan, and Enhong Chen. 2024. Multimodal Dialogue Systems via
Capturing Context-aware Dependencies and Ordinal Information of Semantic
Elements. ACM Transactions on Intelligent Systems and Technology 15, 3 (2024),
1–25.

[101] Tsutomu Higuchi, Takuyo Kodama, Koji Kato, Ryo Fukuda, Naoya Tokiwa, Mit-
suhiro Abe, Teruo Takagiwa, Yuki Shimizu, Junji Musha, Katsuaki Sakurai, et al.
2021. A 1Tb 3b/Cell 3D-Flash Memory in a 170+ Word-Line-Layer Technology.
In ISSCC.

[102] Charles AR Hoare. 1962. Quicksort. The computer journal 5, 1 (1962), 10–16.
[103] C. A. R. Hoare. 1961. Algorithm 65: find. Commun. ACM 4, 7 (jul 1961), 321–322.

https://doi.org/10.1145/366622.366647
[104] Connor Holmes, Masahiro Tanaka, Michael Wyatt, Ammar Ahmad Awan, Jeff

Rasley, Samyam Rajbhandari, Reza Yazdani Aminabadi, Heyang Qin, Arash
Bakhtiari, Lev Kurilenko, et al. 2024. Deepspeed-fastgen: High-throughput
text generation for llms via mii and deepspeed-inference. arXiv preprint
arXiv:2401.08671 (2024).

[105] Abe Bohan Hou, Orion Weller, Guanghui Qin, Eugene Yang, Dawn Lawrie, Nils
Holzenberger, Andrew Blair-Stanek, and Benjamin Van Durme. 2024. CLERC: A
Dataset for Legal Case Retrieval and Retrieval-Augmented Analysis Generation.
arXiv preprint arXiv:2406.17186 (2024).

[106] Han-Wen Hu, Wei-Chen Wang, Yuan-Hao Chang, Yung-Chun Lee, Bo-Rong Lin,
Huai-Mu Wang, Yen-Po Lin, Yu-Ming Huang, Chong-Ying Lee, Tzu-Hsiang Su,
et al. 2022. Ice: An intelligent cognition engine with 3d nand-based in-memory
computing for vector similarity search acceleration. In 2022 55th IEEE/ACM
International Symposium on Microarchitecture (MICRO). IEEE, 763–783.

[107] Jian Huang, Anirudh Badam, Moinuddin K Qureshi, and Karsten Schwan. 2015.
Unified Address Translation for Memory-Mapped SSDs with Flashmap. In ISCA.

[108] Jui-Ting Huang, Ashish Sharma, Shuying Sun, Li Xia, David Zhang, Philip
Pronin, Janani Padmanabhan, Giuseppe Ottaviano, and Linjun Yang. 2020.
Embedding-based retrieval in facebook search. In Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining. 2553–
2561.

[109] Piotr Indyk and Rajeev Motwani. 1998. Approximate nearest neighbors: towards
removing the curse of dimensionality. In Proceedings of the thirtieth annual ACM
symposium on Theory of computing. 604–613.

[110] Intel. 2017. Intel® Xeon® Gold Processor 5118. https://www.intel.de/content/
www/de/de/products/sku/120473/intel-xeon-gold-5118-processor-16-5m-
cache-2-30-ghz/specifications.html

[111] Gautier Izacard, Patrick Lewis, Maria Lomeli, Lucas Hosseini, Fabio Petroni,
Timo Schick, Jane Dwivedi-Yu, Armand Joulin, Sebastian Riedel, and Edouard
Grave. 2023. Atlas: few-shot learning with retrieval augmented language models.
J. Mach. Learn. Res. 24, 1, Article 251 (Jan. 2023), 43 pages.

[112] Hongsun Jang, Jaeyong Song, Jaewon Jung, Jaeyoung Park, Youngsok Kim, and
Jinho Lee. 2024. Smart-Infinity: Fast Large Language Model Training using
Near-Storage Processing on a Real System. In 2024 IEEE International Symposium
on High-Performance Computer Architecture (HPCA). IEEE, 345–360.

[113] Junhyeok Jang, Hanjin Choi, Hanyeoreum Bae, Seungjun Lee, Miryeong Kwon,
and Myoungsoo Jung. 2023. {CXL-ANNS}:{Software-Hardware} collaborative
memory disaggregation and computation for {Billion-Scale} approximate near-
est neighbor search. In 2023 USENIX Annual Technical Conference (USENIX ATC
23). 585–600.

[114] Tim Jansen, Yangling Tong, Victoria Zevallos, and Pedro Ortiz Suarez. 2022. Per-
plexed by quality: A perplexity-based method for adult and harmful content de-
tection in multilingual heterogeneous web data. arXiv preprint arXiv:2212.10440
(2022).

[115] Suhas Jayaram Subramanya, Fnu Devvrit, Harsha Vardhan Simhadri, Ravis-
hankar Krishnawamy, and Rohan Kadekodi. 2019. Diskann: Fast accurate
billion-point nearest neighbor search on a single node. Advances in Neural
Information Processing Systems 32 (2019).

[116] Herve Jegou, Matthijs Douze, and Cordelia Schmid. 2010. Product quantization
for nearest neighbor search. IEEE transactions on pattern analysis and machine
intelligence 33, 1 (2010), 117–128.

[117] Jaeyong Jeong, Sangwook Shane Hahn, Sungjin Lee, and Jihong Kim. 2014.
Lifetime Improvement of NAND Flash-based Storage Systems Using Dynamic
Program and Erase Scaling. In FAST.

[118] Won Seob Jeong, Changmin Lee, Keunsoo Kim, Myung Kuk Yoon,Won Jeon, My-
oungsoo Jung, and Won Woo Ro. 2019. REACT: Scalable and High-performance

Regular Expression Pattern Matching Accelerator for In-storage Processing.
IEEE TPDS (2019).

[119] Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii,
Ye Jin Bang, Andrea Madotto, and Pascale Fung. 2023. Survey of hallucination
in natural language generation. Comput. Surveys 55, 12 (2023), 1–38.

[120] Ziwei Ji, Tiezheng Yu, Yan Xu, Nayeon Lee, Etsuko Ishii, and Pascale Fung.
2023. Towards mitigating LLM hallucination via self reflection. In Findings of
the Association for Computational Linguistics: EMNLP 2023. 1827–1843.

[121] Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le,
Yun-Hsuan Sung, Zhen Li, and Tom Duerig. 2021. Scaling up visual and vision-
language representation learning with noisy text supervision. In International
conference on machine learning. PMLR, 4904–4916.

[122] Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche
Savary, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou
Hanna, Florian Bressand, et al. 2024. Mixtral of experts. arXiv preprint
arXiv:2401.04088 (2024).

[123] Zhengbao Jiang, Frank F Xu, Luyu Gao, Zhiqing Sun, Qian Liu, Jane Dwivedi-
Yu, Yiming Yang, Jamie Callan, and Graham Neubig. 2023. Active retrieval
augmented generation. arXiv preprint arXiv:2305.06983 (2023).

[124] Jiajie Jin, Yutao Zhu, Xinyu Yang, Chenghao Zhang, and Zhicheng Dou. 2024.
FlashRAG: A Modular Toolkit for Efficient Retrieval-Augmented Generation
Research. arXiv preprint arXiv:2405.13576 (2024).

[125] Insoon Jo, Duck-Ho Bae, Andre S Yoon, Jeong-Uk Kang, Sangyeun Cho,
Daniel DG Lee, and Jaeheon Jeong. 2016. YourSQL: a high-performance database
system leveraging in-storage computing. Proceedings of the VLDB Endowment 9,
12 (2016), 924–935.

[126] Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019. Billion-scale similarity
search with GPUs. IEEE Transactions on Big Data 7, 3 (2019), 535–547.

[127] Sang-Woo Jun, Ming Liu, Sungjin Lee, Jamey Hicks, John Ankcorn, Myron King,
Shuotao Xu, et al. 2015. BlueDBM: An Appliance for Big Data Analytics. In
ISCA.

[128] Sang-Woo Jun, Huy TNguyen, Vijay Gadepally, et al. 2016. In-Storage Embedded
Accelerator for Sparse Pattern Processing. In HPEC.

[129] Sang-Woo Jun, Andy Wright, Sizhuo Zhang, Shuotao Xu, and Arvind. 2018.
GraFBoost: Using Accelerated Flash Storage for External Graph Analytics. In
ISCA.

[130] Myoungsoo Jung, Ramya Prabhakar, and Mahmut Taylan Kandemir. 2012. Tak-
ing Garbage Collection Overheads Off the Critical Path in SSDs. InMiddleware.

[131] Luyi Kang, Yuqi Xue, Weiwei Jia, Xiaohao Wang, Jongryool Kim, Changhwan
Youn, Myeong Joon Kang, Hyung Jin Lim, Bruce Jacob, and Jian Huang. 2021.
IceClave: A Trusted Execution Environment for In-Storage Computing. In MI-
CRO.

[132] Wonkyung Kang, Dongkun Shin, and Sungjoo Yoo. 2017. Reinforcement
learning-assisted garbage collection to mitigate long-tail latency in SSD. ACM
Transactions on Embedded Computing Systems (TECS) 16, 5s (2017), 1–20.

[133] Yangwook Kang, Yang suk Kee, Ethan L. Miller, and Chanik Park. 2013. Enabling
Cost-effective Data Processing with Smart SSD. In MSST.

[134] Jungo Kasai, Keisuke Sakaguchi, Ronan Le Bras, Akari Asai, Xinyan Yu,
Dragomir Radev, Noah A Smith, Yejin Choi, Kentaro Inui, et al. 2024. RE-
ALTIME QA: what’s the answer right now? Advances in Neural Information
Processing Systems 36 (2024).

[135] Nirant Kasliwal. 2023. Binary Quantization - Vector Search, 40x Faster. https:
//qdrant.tech/articles/binary-quantization/

[136] Kimberly Keeton, David A Patterson, and Joseph M Hellerstein. 1998. A Case
for Intelligent Disks (IDISKs). SIGMOD Rec. (1998).

[137] Ali Khakifirooz, Sriram Balasubrahmanyam, Richard Fastow, Kristopher H
Gaewsky, Chang Wan Ha, Rezaul Haque, Owen W Jungroth, Steven Law, Alias-
gar S Madraswala, Binh Ngo, et al. 2021. A 1Tb 4b/Cell 144-Tier Floating-Gate
3D-NAND Flash Memory with 40MB/s Program Throughput and 13.8Gb/mm2
Bit Density. In ISSCC.

[138] Saim Khan, Somesh Singh, Harsha Vardhan Simhadri, Jyothi Vedurada, et al.
2024. BANG: Billion-Scale Approximate Nearest Neighbor Search using a Single
GPU. arXiv preprint arXiv:2401.11324 (2024).

[139] Chulbum Kim, Jinho Ryu, Taesung Lee, Hyunggon Kim, Jaewoo Lim, Jaeyong
Jeong, Seonghwan Seo, Hongsoo Jeon, Bokeun Kim, Inyoul Lee, et al. 2012.
A 21 nm high performance 64 Gb MLC NAND flash memory with 400 MB/s
asynchronous toggle DDR interface. IEEE Journal of Solid-State Circuits 47, 4
(2012), 981–989.

[140] Gangwoo Kim, Sungdong Kim, Byeongguk Jeon, Joonsuk Park, and Jaewoo Kang.
2023. Tree of clarifications: Answering ambiguous questions with retrieval-
augmented large language models. arXiv preprint arXiv:2310.14696 (2023).

[141] Jiho Kim, Myoungsoo Jung, and John Kim. 2021. Decoupled SSD: Reducing
Data Movement on NAND-Based Flash SSD. IEEE CAL (2021).

[142] Junkyum Kim, Myeonggu Kang, Yunki Han, Yang-Gon Kim, and Lee-Sup Kim.
2023. Optimstore: In-storage optimization of large scale dnns with on-die
processing. In 2023 IEEE International Symposium on High-Performance Computer
Architecture (HPCA). IEEE, 611–623.

1187

ISCA ’25, June 21–25, 2025, Tokyo, Japan Chen et al.

[143] Jiho Kim, Seokwon Kang, Yongjun Park, and John Kim. 2022. Networked SSD:
Flash Memory Interconnection Network for High-Bandwidth SSD. In MICRO.

[144] Ji-Hoon Kim, Yeo-Reum Park, Jaeyoung Do, Soo-Young Ji, and Joo-Young Kim.
2022. Accelerating large-scale graph-based nearest neighbor search on a com-
putational storage platform. IEEE Trans. Comput. 72, 1 (2022), 278–290.

[145] Minkuk Kim, Hyeon Bae Kim, Jinyoung Moon, Jinwoo Choi, and Seong Tae Kim.
2024. Do You Remember? Dense Video Captioning with Cross-Modal Memory
Retrieval. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 13894–13904.

[146] Minsub Kim and Sungjin Lee. 2020. Reducing Tail Latency of DNN-based
Recommender Systems using In-Storage Processing. In APSys.

[147] Moosung Kim, Sung Won Yun, Jungjune Park, Hyun Kook Park, Jungyu Lee,
Yeong Seon Kim, Daehoon Na, Sara Choi, Youngsun Song, Jonghoon Lee,
Hyunjun Yoon, Kangbin Lee, Byunghoon Jeong, Sanglok Kim, Junhong Park,
Cheon An Lee, Jaeyun Lee, Jisang Lee, Jin Young Chun, Joonsuc Jang, Younghwi
Yang, SeungHyunMoon,MyunghoonChoi,Wontae Kim, Jungsoo Kim, Seokmin
Yoon, Pansuk Kwak, Myunghun Lee, Raehyun Song, Sunghoon Kim, Chiweon
Yoon, Dongku Kang, Jin-Yub Lee, and Jaihyuk Song. 2022. A 1Tb 3b/Cell 8th-
Generation 3D-NAND Flash Memory with 164MB/s Write Throughput and
a 2.4Gb/s Interface. In 2022 IEEE International Solid-State Circuits Conference
(ISSCC), Vol. 65. 136–137. https://doi.org/10.1109/ISSCC42614.2022.9731640

[148] Sungchan Kim, Hyunok Oh, Chanik Park, Sangyeun Cho, Sang-Won Lee, and
Bongki Moon. 2016. In-storage processing of database scans and joins. Informa-
tion Sciences 327 (2016), 183–200.

[149] Sungchan Kim, Hyunok Oh, Chanik Park, Sangyeun Cho, Sang-Won Lee, and
Bongki Moon. 2016. In-Storage Processing of Database Scans and Joins. Infor-
mation Sciences (2016).

[150] Yoongu Kim, Weikun Yang, and Onur Mutlu. 2015. Ramulator: A fast and
extensible DRAM simulator. IEEE Computer architecture letters 15, 1 (2015),
45–49.

[151] Gunjae Koo, Kiran Kumar Matam, Te I, HV Krishna Giri Narra, Jing Li, Hung-
Wei Tseng, Steven Swanson, and Murali Annavaram. 2017. Summarizer: Trading
Communication with Computing Near Storage. In MICRO.

[152] Toshiyuki Kouchi, Mami Kakoi, Noriyasu Kumazaki, Akio Sugahara, Akihiro
Imamoto, Yasufumi Kajiyama, Yuri Terada, Bushnaq Sanad, Naoaki Kanagawa,
Takuyo Kodama, et al. 2020. A 128gb 1-bit/cell 96-word-line-layer 3d flash
memory to improve the random read latency with tprog= 75 𝜇s and tr= 4 𝜇s.
IEEE Journal of Solid-State Circuits 56, 1 (2020), 225–234.

[153] Eyal Kushilevitz, Rafail Ostrovsky, and Yuval Rabani. 1998. Efficient search for
approximate nearest neighbor in high dimensional spaces. In Proceedings of the
thirtieth annual ACM symposium on Theory of computing. 614–623.

[154] Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur
Parikh, Chris Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton
Lee, et al. 2019. Natural questions: a benchmark for question answering research.
Transactions of the Association for Computational Linguistics 7 (2019), 453–466.

[155] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody
Yu, Joey Gonzalez, Hao Zhang, and Ion Stoica. 2023. vllm: Easy, fast, and cheap
llm serving with pagedattention. See https://vllm. ai/(accessed 9 August 2023)
(2023).

[156] Jakub Lála, Odhran O’Donoghue, Aleksandar Shtedritski, Sam Cox, Samuel G
Rodriques, andAndrewDWhite. 2023. Paperqa: Retrieval-augmented generative
agent for scientific research. arXiv preprint arXiv:2312.07559 (2023).

[157] LangChain. 2023. Text Splitters. https://python.langchain.com/v0.1/docs/
modules/data_connection/document_transformers/

[158] Chankyu Lee, Rajarshi Roy, Mengyao Xu, Jonathan Raiman, Mohammad
Shoeybi, Bryan Catanzaro, and Wei Ping. 2024. NV-Embed: Improved Tech-
niques for Training LLMs as Generalist Embedding Models. arXiv preprint
arXiv:2405.17428 (2024).

[159] Dusol Lee, Duwon Hong, Wonil Choi, and Jihong Kim. 2022. MQSim-E: An
Enterprise SSD Simulator. IEEE Computer Architecture Letters 21, 1 (2022), 13–16.

[160] Jinhyuk Lee, Zhuyun Dai, Xiaoqi Ren, Blair Chen, Daniel Cer, Jeremy R Cole,
Kai Hui, Michael Boratko, Rajvi Kapadia, Wen Ding, et al. 2024. Gecko: Ver-
satile text embeddings distilled from large language models. arXiv preprint
arXiv:2403.20327 (2024).

[161] Junghee Lee, Youngjae Kim, Galen M Shipman, Sarp Oral, and Jongman Kim.
2013. Preemptible I/O Scheduling of Garbage Collection for Solid State Drives.
IEEE TCAD (2013).

[162] Joo Hwan Lee, Hui Zhang, Veronica Lagrange, Praveen Krishnamoorthy, Xi-
aodong Zhao, and Yang Seok Ki. 2020. SmartSSD: FPGA Accelerated Near-
Storage Data Analytics on SSD. IEEE CAL (2020).

[163] Seungjae Lee, Young-Taek Lee, Wook-Kee Han, Dong-Hwan Kim, Moo-Sung
Kim, Seung-Hyun Moon, Hyun Chul Cho, Jung-Woo Lee, Dae-Seok Byeon,
Young-Ho Lim, et al. 2004. A 3.3V 4Gb Four-Level NAND Flash Memory with
90nm CMOS Technology. In ISSCC.

[164] Sean Lee, Aamir Shakir, Darius Koenig, and Julius Lipp. 2024. Open Source Strikes
Bread - New Fluffy Embeddings Model. https://www.mixedbread.ai/blog/mxbai-
embed-large-v1

[165] Nancy Leong, Sachit Chandra, and Hounien Chen. 2008. Random Cache Read
Using a Double Memory. US Patent 7,423,915.

[166] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir
Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, et al. 2020. Retrieval-augmented generation for knowledge-intensive nlp
tasks. Advances in Neural Information Processing Systems 33 (2020), 9459–9474.

[167] Cangyuan Li, Ying Wang, Cheng Liu, Shengwen Liang, Huawei Li, and Xiaowei
Li. 2021. GLIST: Towards In-Storage Graph Learning. In USENIX ATC.

[168] Huaicheng Li, Daniel S Berger, Lisa Hsu, Daniel Ernst, Pantea Zardoshti, Stanko
Novakovic, Monish Shah, Samir Rajadnya, Scott Lee, Ishwar Agarwal, et al. 2023.
Pond: Cxl-based memory pooling systems for cloud platforms. In Proceedings of
the 28th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2. 574–587.

[169] Huayang Li, Yixuan Su, Deng Cai, Yan Wang, and Lemao Liu. 2022. A survey
on retrieval-augmented text generation. arXiv preprint arXiv:2202.01110 (2022).

[170] Sen Li, Fuyu Lv, Taiwei Jin, Guli Lin, Keping Yang, Xiaoyi Zeng, Xiao-Ming Wu,
and Qianli Ma. 2021. Embedding-based product retrieval in taobao search. In
Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data
Mining. 3181–3189.

[171] Shuangchen Li, Cong Xu, Qiaosha Zou, Jishen Zhao, Yu Lu, and Yuan Xie. 2016.
Pinatubo: A Processing-in-Memory Architecture for Bulk Bitwise Operations
in Emerging Non-Volatile Memories. In DAC.

[172] Wen Li, Ying Zhang, Yifang Sun, Wei Wang, Mingjie Li, Wenjie Zhang, and
Xuemin Lin. 2019. Approximate nearest neighbor search on high dimensional
data—experiments, analyses, and improvement. IEEE Transactions on Knowledge
and Data Engineering 32, 8 (2019), 1475–1488.

[173] Yinan Li and Jignesh M. Patel. 2013. BitWeaving: Fast Scans for Main Memory
Data Processing. In SIGMOD.

[174] Yinan Li and Jignesh M. Patel. 2014. WideTable: An Accelerator for Analytical
Data Processing. In VLDB.

[175] Zehan Li, Xin Zhang, Yanzhao Zhang, Dingkun Long, Pengjun Xie, and Meishan
Zhang. 2023. Towards general text embeddings with multi-stage contrastive
learning. arXiv preprint arXiv:2308.03281 (2023).

[176] Shengwen Liang, Ying Wang, Cheng Liu, Huawei Li, and Xiaowei Li. 2019.
InS-DLA: An In-SSD Deep Learning Accelerator for Near-Data Processing. In
FPL.

[177] Shengwen Liang, Ying Wang, Youyou Lu, Zhe Yang, Huawei Li, and Xiaowei Li.
2019. Cognitive SSD: A Deep Learning Engine for In-Storage Data Retrieval. In
USENIX ATC.

[178] Shengwen Liang, Ying Wang, Ziming Yuan, Cheng Liu, Huawei Li, and Xiaowei
Li. 2022. VStore: in-storage graph based vector search accelerator. In Proceedings
of the 59th ACM/IEEE Design Automation Conference. 997–1002.

[179] Minje Lim, Jeeyoon Jung, and Dongkun Shin. 2021. LSM-Tree Compaction
Acceleration Using In-Storage Processing. In ICCE-Asia.

[180] Sang-Phil Lim, Sang-Won Lee, and Bongki Moon. 2010. FASTer FTL for
Enterprise-Class Flash Memory SSDs. In SNAPI.

[181] Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu,
Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. 2024.
Deepseek-v3 technical report. arXiv preprint arXiv:2412.19437 (2024).

[182] Jerry Liu. 2022. LlamaIndex. https://doi.org/10.5281/zenodo.1234
[183] Ting Liu, Andrew Moore, Ke Yang, and Alexander Gray. 2004. An investigation

of practical approximate nearest neighbor algorithms. Advances in neural
information processing systems 17 (2004).

[184] Zengtao Tony Liu. 2022. Flash Memory and NAND. In Advanced Driver As-
sistance Systems and Autonomous Vehicles: From Fundamentals to Applications.
Springer.

[185] Antoine Louis, Gijs van Dijck, and Gerasimos Spanakis. 2024. Interpretable
long-form legal question answering with retrieval-augmented large language
models. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 38.
22266–22275.

[186] Alejandro Lozano, Scott L Fleming, Chia-Chun Chiang, and Nigam Shah. 2023.
Clinfo. ai: An open-source retrieval-augmented large language model system for
answering medical questions using scientific literature. In PACIFIC SYMPOSIUM
ON BIOCOMPUTING 2024. World Scientific, 8–23.

[187] Shuai Lu, Nan Duan, Hojae Han, Daya Guo, Seung-won Hwang, and Alexey
Svyatkovskiy. 2022. Reacc: A retrieval-augmented code completion framework.
arXiv preprint arXiv:2203.07722 (2022).

[188] Shyue-Kung Lu, Shang-Xiu Zhong, and Masaki Hashizume. 2018. Fault Leveling
Techniques for Yield and Reliability Enhancement of NAND Flash Memories.
Journal of Electronic Testing 34 (2018), 559–570.

[189] Macronix. 2013. Technical Note: Improving NAND Throughput with Two-Plane
and Cache Operations. https://www.macronix.com/Lists/ApplicationNote/
Attachments/1907/AN0268V1_Improving%20NAND%20Throughput%20with%
20Two-Plane%20and%20Cache%20Operations.pdf.

[190] Hiroshi Maejima, Kazushige Kanda, Susumu Fujimura, Teruo Takagiwa, Susumu
Ozawa, Jumpei Sato, Yoshihiko Shindo, Manabu Sato, Naoaki Kanagawa, Junji
Musha, et al. 2018. A 512Gb 3b/Cell 3D Flash Memory on a 96-Word-Line-Layer
Technology. In ISSCC.

1188

REIS: A High-Performance and Energy-Efficient Retrieval System with In-Storage Processing ISCA ’25, June 21–25, 2025, Tokyo, Japan

[191] Hosam M Mahmoud, Reza Modarres, and Robert T Smythe. 1995. Analysis of
quickselect: An algorithm for order statistics. RAIRO-Theoretical Informatics
and Applications 29, 4 (1995), 255–276.

[192] Vikram Sharma Mailthody, Zaid Qureshi, Weixin Liang, Ziyan Feng, Simon Gar-
cia De Gonzalo, Youjie Li, Hubertus Franke, Jinjun Xiong, Jian Huang, and
Wen-mei Hwu. 2019. Deepstore: In-storage acceleration for intelligent queries.
In Proceedings of the 52nd Annual IEEE/ACM International Symposium on Mi-
croarchitecture. 224–238.

[193] Vikram Sharma Mailthody, Zaid Qureshi, Weixin Liang, Ziyan Feng, Simon Gar-
cia De Gonzalo, Youjie Li, Hubertus Franke, Jinjun Xiong, Jian Huang, and
Wen-mei Hwu. 2019. Deepstore: In-Storage Acceleration for Intelligent Queries.
In MICRO.

[194] Yury Malkov, Alexander Ponomarenko, Andrey Logvinov, and Vladimir Krylov.
2014. Approximate nearest neighbor algorithm based on navigable small world
graphs. Information Systems 45 (2014), 61–68.

[195] Yu A Malkov and Dmitry A Yashunin. 2018. Efficient and robust approximate
nearest neighbor search using hierarchical navigable small world graphs. IEEE
transactions on pattern analysis and machine intelligence 42, 4 (2018), 824–836.

[196] Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das, Daniel Khashabi, and
Hannaneh Hajishirzi. 2023. When Not to Trust Language Models: Investigating
Effectiveness of Parametric and Non-Parametric Memories. In Proceedings of
the 61st Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (Eds.).
Association for Computational Linguistics, Toronto, Canada, 9802–9822. https:
//doi.org/10.18653/v1/2023.acl-long.546

[197] Magdalen Dobson Manohar, Zheqi Shen, Guy Blelloch, Laxman Dhulipala, Yan
Gu, Harsha Vardhan Simhadri, and Yihan Sun. 2024. ParlayANN: Scalable
and Deterministic Parallel Graph-Based Approximate Nearest Neighbor Search
Algorithms. In Proceedings of the 29th ACM SIGPLAN Annual Symposium on
Principles and Practice of Parallel Programming. 270–285.

[198] Nika Mansouri Ghiasi, Jisung Park, Harun Mustafa, Jeremie Kim, Ataberk Ol-
gun, Arvid Gollwitzer, Damla Senol Cali, Can Firtina, Haiyu Mao, Nour Almad-
houn Alserr, et al. 2022. GenStore: A high-performance in-storage processing
system for genome sequence analysis. In Proceedings of the 27th ACM Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems. 635–654.

[199] Nika Mansouri Ghiasi, Jisung Park, Harun Mustafa, Jeremie Kim, Ataberk Ol-
gun, Arvid Gollwitzer, Damla Senol Cali, Can Firtina, Haiyu Mao, Nour Almad-
houn Alserr, Rachata Ausavarungnirun, Nandita Vijaykumar, Mohammed Alser,
and Onur Mutlu. 2022. GenStore: A High-Performance In-Storage Processing
System for Genome Sequence Analysis. In ASPLOS.

[200] ArianaMartino, Michael Iannelli, and Coleen Truong. 2023. Knowledge injection
to counter large language model (LLM) hallucination. In European Semantic
Web Conference. Springer, 182–185.

[201] Pratik Mazumder, Pravendra Singh, Kranti Kumar Parida, and Vinay P Nam-
boodiri. 2021. Avgzslnet: Audio-visual generalized zero-shot learning by re-
constructing label features from multi-modal embeddings. In Proceedings of the
IEEE/CVF winter conference on applications of computer vision. 3090–3099.

[202] Rui Meng, Ye Liu, Shafiq Rayhan Joty, Caiming Xiong, Yingbo Zhou, and Semih
Yavuz. 2024. Sfrembedding-mistral: enhance text retrieval with transfer learning.
Salesforce AI Research Blog 3 (2024).

[203] Rino Micheloni, Luca Crippa, and Alessia Marelli. 2010. Inside NAND Flash
Memories. Springer.

[204] Rino Micheloni, Luca Crippa, and Alessia Marelli. 2010. Inside NAND Flash
Memories.

[205] Microchip. 2022. Microchip 16-Channel PCIe Gen 5 Enterprise
NVMe SSD Controller, https://www.microchip.com/en-us/about/news-
releases/products/highest-performance-16-channel-pcie-gen-5-enterprise-
nvme-ssd-controller.

[206] Micron. 2009. NAND Flash Memory Data Sheet: MT29F16G08ABABA,
MT29F32G-08AFABA, MT29F64G08A[J/K/M]ABA, MT29F128G08AUABA,
MT29F16G-08ABCBB, MT29F32G08AECBB, MT29F64G08A[K/M]CBB,
MT29F128G-08AUCBB.

[207] Micron. 2023. 9400 NVMe™ SSD. https://www.micron.com/products/storage/
ssd/data-center-ssd/9400-ssd

[208] Micron. 2025. DDR4 SDRAM. https://www.micron.com/products/memory/
dram-components/ddr4-sdram

[209] Microsoft. 2024. Binary quantization in Azure AI Search: optimized storage and
faster search. https://techcommunity.microsoft.com/blog/azure-ai-services-
blog/binary-quantization-in-azure-ai-search-optimized-storage-and-faster-
search/4221918

[210] Microsoft. 2024. Multimodal embeddings (version 4.0). https://learn.microsoft.
com/en-us/azure/ai-services/computer-vision/concept-image-retrieval

[211] Niklas Muennighoff, Hongjin Su, Liang Wang, Nan Yang, Furu Wei, Tao Yu,
Amanpreet Singh, and Douwe Kiela. 2024. Generative representational instruc-
tion tuning. arXiv preprint arXiv:2402.09906 (2024).

[212] NiklasMuennighoff, Nouamane Tazi, LoïcMagne, andNils Reimers. 2022. MTEB:
Massive text embedding benchmark. arXiv preprint arXiv:2210.07316 (2022).

[213] Javier Vargas Munoz, Marcos A Gonçalves, Zanoni Dias, and Ricardo da S Torres.
2019. Hierarchical clustering-based graphs for large scale approximate nearest
neighbor search. Pattern Recognition 96 (2019), 106970.

[214] Rakesh Nadig, Mohammad Sadrosadati, Haiyu Mao, Nika Mansouri Ghiasi,
Arash Tavakkol, Jisung Park, Hamid Sarbazi-Azad, Juan Gómez Luna, and Onur
Mutlu. 2023. Venice: Improving Solid-State Drive Parallelism at Low Cost via
Conflict-Free Accesses. In ISCA.

[215] Fuping Niu, Jianhui Yue, Jiangqiu Shen, Xiaofei Liao, and Hai Jin. 2024.
FlashGNN: An In-SSD Accelerator for GNN Training. In 2024 IEEE Interna-
tional Symposium on High-Performance Computer Architecture (HPCA). IEEE,
361–378.

[216] Rodrigo Nogueira, Wei Yang, Kyunghyun Cho, and Jimmy Lin. 2019. Multi-stage
document ranking with BERT. arXiv preprint arXiv:1910.14424 (2019).

[217] NVIDIA Corp. 2023. NVIDIA H100. https://www.nvidia.com/en-us/data-center/
h100/.

[218] nvmcommands 2024. NVM Command Set Specification Revision 1.1.
[219] Elizabeth O’Neil, Patrick O’Neil, and Kesheng Wu. 2007. Bitmap Index Design

Choices and their Performance Implications. In IDEAS.
[220] Hiroyuki Ootomo, Akira Naruse, Corey Nolet, Ray Wang, Tamas Feher, and

Yong Wang. 2023. Cagra: Highly parallel graph construction and approximate
nearest neighbor search for gpus. arXiv preprint arXiv:2308.15136 (2023).

[221] OpenAI. 2024. New embedding models and API updates. https://openai.com/
index/new-embedding-models-and-api-updates/

[222] OpenAI. 2025. ChatGPT. https://chatgpt.com/.
[223] Aditya Pal, Chantat Eksombatchai, Yitong Zhou, Bo Zhao, Charles Rosenberg,

and Jure Leskovec. 2020. Pinnersage: Multi-modal user embedding framework
for recommendations at pinterest. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. 2311–2320.

[224] Jisung Park, Roknoddin Azizi, Geraldo F Oliveira, Mohammad Sadrosadati,
Rakesh Nadig, David Novo, Juan Gómez-Luna, Myungsuk Kim, and Onur Mutlu.
2022. Flash-Cosmos: In-flash bulk bitwise operations using inherent compu-
tation capability of nand flash memory. In 2022 55th IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, 937–955.

[225] Jaehyun Park, Jaewan Choi, Kwanhee Kyung, Michael Jaemin Kim, Yongsuk
Kwon, Nam Sung Kim, and Jung Ho Ahn. 2024. AttAcc! Unleashing the Power
of PIM for Batched Transformer-based Generative Model Inference. In Pro-
ceedings of the 29th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 2. 103–119.

[226] Shuyi Pei, Jing Yang, and Qing Yang. 2019. REGISTOR: A Platform for Unstruc-
tured Data Processing inside SSD Storage. ACM TOS (2019).

[227] Ben Perach, Ronny Ronen, BennyKimelfeld, and Shahar Kvatinsky. 2022. PIMDB:
Understanding Bulk-Bitwise Processing In-Memory Through Database Analyt-
ics. arXiv:2203.10486 (2022).

[228] Malte Pietsch, Timo Möller, Bogdan Kostic, Julian Risch, Massimiliano Pippi,
Mayank Jobanputra, Sara Zanzottera, Silvano Cerza, Vladimir Blagojevic,
Thomas Stadelmann, Tanay Soni, and Sebastian Lee. 2019. Haystack: the end-
to-end NLP framework for pragmatic builders. https://github.com/deepset-
ai/haystack

[229] Mykhailo Poliakov and Nadiya Shvai. 2024. Multi-Meta-RAG: Improving RAG
for Multi-Hop Queries using Database Filtering with LLM-Extracted Metadata.
arXiv preprint arXiv:2406.13213 (2024).

[230] Hongwei Qin, Dan Feng, Wei Tong, Yutong Zhao, Sheng Qiu, Fei Liu, and Shu Li.
2021. Better atomic writes by exposing the flash out-of-band area to file systems.
In Proceedings of the 22nd ACM SIGPLAN/SIGBED International Conference on
Languages, Compilers, and Tools for Embedded Systems. 12–23.

[231] Ruiyang Qin, Zheyu Yan, Dewen Zeng, Zhenge Jia, Dancheng Liu, Jianbo Liu,
Ahmed Abbasi, Zhi Zheng, Ningyuan Cao, Kai Ni, et al. 2024. Robust implemen-
tation of retrieval-augmented generation on edge-based computing-in-memory
architectures. In Proceedings of the 43rd IEEE/ACM International Conference on
Computer-Aided Design. 1–9.

[232] Derrick Quinn, Mohammad Nouri, Neel Patel, John Salihu, Alireza Salemi,
Sukhan Lee, Hamed Zamani, and Mohammad Alian. 2025. Accelerating
Retrieval-Augmented Generation. In Proceedings of the 30th ACM International
Conference on Architectural Support for Programming Languages and Operating
Systems, Volume 1. 15–32.

[233] Zackary Rackauckas. 2024. Rag-fusion: a new take on retrieval-augmented
generation. arXiv preprint arXiv:2402.03367 (2024).

[234] Alec Radford, JongWook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sand-
hini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al.
2021. Learning transferable visual models from natural language supervision.
In International conference on machine learning. PMLR, 8748–8763.

[235] Vatsal Raina and Mark Gales. 2024. Question-Based Retrieval using Atomic
Units for Enterprise RAG. arXiv preprint arXiv:2405.12363 (2024).

[236] Md Raquibuzzaman, Aleksandar Milenkovic, and Biswajit Ray. 2022. Intrablock
wear leveling to counter layer-to-layer endurance variation of 3-D NAND flash
memory. IEEE Transactions on Electron Devices 70, 1 (2022), 70–75.

[237] Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. 2020. Deep-
speed: System optimizations enable training deep learning models with over

1189

ISCA ’25, June 21–25, 2025, Tokyo, Japan Chen et al.

100 billion parameters. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 3505–3506.

[238] Redis. 2025. Redis bitmaps. https://redis.io/docs/data-types/bitmaps/.
[239] Nils Reimers. 2022. Cohere int8 & binary Embeddings - Scale Your Vector

Database to Large Datasets. https://cohere.com/blog/int8-binary-embeddings
[240] Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence Embeddings

using Siamese BERT-Networks. In Proceedings of the 2019 Conference on Em-
pirical Methods in Natural Language Processing. Association for Computational
Linguistics. https://arxiv.org/abs/1908.10084

[241] Nils Reimers and Iryna Gurevych. 2020. Making Monolingual Sentence Em-
beddings Multilingual using Knowledge Distillation. In Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing. Association
for Computational Linguistics. https://arxiv.org/abs/2004.09813

[242] Jie Ren, Minjia Zhang, and Dong Li. 2020. Hm-ann: Efficient billion-point nearest
neighbor search on heterogeneous memory. Advances in Neural Information
Processing Systems 33 (2020), 10672–10684.

[243] Erik Riedel, Christos Faloutsos, Garth A Gibson, and David Nagle. 2001. Active
Disks for Large-Scale Data Processing. Computer (2001).

[244] Erik Riedel, Garth Gibson, and Christos Faloutsos. 1998. Active Storage for
Large-Scale Data Mining and Multimedia Applications. VLDB (1998).

[245] Meng* Rui, Liu* Ye, Rayhan Joty Shafiq, Xiong Caiming, Zhou Yingbo, and Yavuz
Semih. 2024. SFR-Embedding-2: Advanced Text Embedding with Multi-stage
Training. https://huggingface.co/Salesforce/SFR-Embedding-2_R

[246] Samsung. 2009. 32Gb A-die NAND Flash Datasheet.
[247] Samsung. 2013. Samsung Solid State Drive TurboWrite Technology White

Paper.
[248] Samsung. 2020. Samsung 128 GB DDR4 3200 LRDIMM ECC Registred. https:

//semiconductor.samsung.com/dram/module/lrdimm/m386aag40am3-cwe/.
[249] Samsung. 2021. 980 Pro. https://semiconductor.samsung.com/consumer-

storage/internal-ssd/980pro/
[250] Samsung. 2021. PM9A3 NVMe PCIe SSD. https://semiconductor.samsung.com/

ssd/datacenter-ssd/pm9a3/
[251] Samsung. 2022. 990 Pro. https://semiconductor.samsung.com/consumer-

storage/internal-ssd/990-pro/
[252] Daniel Sanchez and Christos Kozyrakis. 2013. ZSim: Fast and accurate microar-

chitectural simulation of thousand-core systems. ACM SIGARCH Computer
architecture news 41, 3 (2013), 475–486.

[253] Kunal Sawarkar, Abhilasha Mangal, and Shivam Raj Solanki. 2024. Blended rag:
Improving rag (retriever-augmented generation) accuracy with semantic search
and hybrid query-based retrievers. In 2024 IEEE 7th International Conference on
Multimedia Information Processing and Retrieval (MIPR). IEEE, 155–161.

[254] Sudharsan Seshadri, Mark Gahagan, Sundaram Bhaskaran, Trevor Bunker,
Arup De, Yanqin Jin, Yang Liu, and Steven Swanson. 2014. Willow: A User-
Programmable SSD. In USENIX OSDI.

[255] Vivek Seshadri, Kevin Hsieh, Amirali Boroumand, Donghyuk Lee, Michael A.
Kozuch, Onur Mutlu, Phillip B. Gibbons, and Todd C. Mowry. 2015. Fast Bulk
Bitwise AND and OR in DRAM. IEEE CAL (2015).

[256] Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata Ausavarung-
nirun, Gennady Pekhimenko, Yixin Luo, Onur Mutlu, Phillip B Gibbons,
Michael A Kozuch, et al. 2013. RowClone: Fast and Energy-Efficient In-DRAM
Bulk Data Copy and Initialization. In MICRO.

[257] Vivek Seshadri, Donghyuk Lee, Thomas Mullins, Hasan Hassan, Amirali
Boroumand, Jeremie Kim, Michael A Kozuch, Onur Mutlu, Phillip B Gibbons,
and Todd C Mowry. 2017. Ambit: In-Memory Accelerator for Bulk Bitwise
Operations Using Commodity DRAM Technology. In MICRO.

[258] Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, and
Tri Dao. 2024. Flashattention-3: Fast and accurate attention with asynchrony
and low-precision. arXiv preprint arXiv:2407.08608 (2024).

[259] Narges Shahidi, Mahmut T Kandemir, Mohammad Arjomand, Chita R Das,
Myoungsoo Jung, and Anand Sivasubramaniam. 2016. Exploring the Potentials
of Parallel Garbage Collection in SSDs for Enterprise Storage Systems. In SC.

[260] Aamir Shakir, Tom Aarsen, and Sean Lee. 2024. Binary and Scalar Embedding
Quantization for Significantly Faster & Cheaper Retrieval. Hugging Face Blog
(2024). https://huggingface.co/blog/embedding-quantization.

[261] Noboru Shibata, Kazushige Kanda, Takahiro Shimizu, Jun Nakai, Osamu Na-
gao, Naoki Kobayashi, Makoto Miakashi, Yasushi Nagadomi, Tomoaki Nakano,
Takahisa Kawabe, et al. 2019. A 1.33-Tb 4-Bit/Cell 3-D Flash Memory on a
96-Word-Line-Layer Technology. JSSC (2019).

[262] Ji-Yong Shin, Zeng-Lin Xia, Ning-Yi Xu, Rui Gao, Xiong-Fei Cai, Seungryoul
Maeng, and Feng-Hsiung Hsu. 2009. FTL Design Exploration in Reconfigurable
High-Performance SSD for Server Applications. In ICS.

[263] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared
Casper, and Bryan Catanzaro. 2019. Megatron-lm: Training multi-billion param-
eter language models using model parallelism. arXiv preprint arXiv:1909.08053
(2019).

[264] Harsha Simhadri et al. 2023. Big ANN Benchmarks. https://github.com/harsha-
simhadri/big-ann-benchmarks/tree/main

[265] Harsha Vardhan Simhadri, George Williams, Martin Aumüller, Matthijs Douze,
Artem Babenko, Dmitry Baranchuk, Qi Chen, Lucas Hosseini, Ravishankar
Krishnaswamny, Gopal Srinivasa, et al. 2022. Results of the NeurIPS’21 chal-
lenge on billion-scale approximate nearest neighbor search. In NeurIPS 2021
Competitions and Demonstrations Track. PMLR, 177–189.

[266] Kang-Deog Suh, Byung-Hoon Suh, Young-Ho Lim, Jin-Ki Kim, Young-Joon
Choi, Yong-Nam Koh, Sung-Soo Lee, Suk-Chon Kwon, Byung-Soon Choi, Jin-
Sun Yum, Jung-Hyuk Choi, Jang-Rae Kim, and Hyung-Kyu Lim. 1995. A 3.3 V
32 Mb NAND Flash Memory with Incremental Step Pulse Programming Scheme.
JSSC (1995).

[267] Jinghan Sun, Shaobo Li, Yunxin Sun, Chao Sun, Dejan Vucinic, and Jian Huang.
2023. LeaFTL: A Learning-Based Flash Translation Layer for Solid-State Drives.
In ASPLOS.

[268] Philip Sun. 2020. Announcing ScaNN: Efficient Vector Similarity Search. https:
//research.google/blog/announcing-scann-efficient-vector-similarity-search/

[269] Weiyi Sun, Mingyu Gao, Zhaoshi Li, Aoyang Zhang, Iris Ying Chou, Jianfeng
Zhu, Shaojun Wei, and Leibo Liu. 2025. Lincoln: Real-Time 50˜ 100B LLM
Inference on Consumer Devices with LPDDR-Interfaced, Compute-Enabled
Flash Memory. In 2025 IEEE International Symposium on High Performance
Computer Architecture (HPCA). IEEE, 1734–1750.

[270] Arash Tavakkol, Juan Gómez-Luna, Mohammad Sadrosadati, Saugata Ghose,
and Onur Mutlu. 2018. MQSim: A Framework for Enabling Realistic Studies of
Modern Multi-Queue SSD Devices. In FAST.

[271] Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui
Yu, Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican,
et al. 2023. Gemini: a family of highly capable multimodal models. arXiv preprint
arXiv:2312.11805 (2023).

[272] Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol
Gulati, Garrett Tanzer, Damien Vincent, Zhufeng Pan, Shibo Wang, et al. 2024.
Gemini 1.5: Unlocking multimodal understanding across millions of tokens of
context. arXiv preprint arXiv:2403.05530 (2024).

[273] Nandan Thakur, Nils Reimers, and Jimmy Lin. 2023. Injecting Domain Adapta-
tion with Learning-to-hash for Effective and Efficient Zero-shot Dense Retrieval.
arXiv preprint arXiv:2205.11498 (2023).

[274] Nandan Thakur, Nils Reimers, Andreas Rücklé, Abhishek Srivastava, and Iryna
Gurevych. 2021. Beir: A heterogenous benchmark for zero-shot evaluation of
information retrieval models. arXiv preprint arXiv:2104.08663 (2021).

[275] Ravi Theja. 2023. Evaluating the Ideal Chunk Size for a RAG System using
LlamaIndex. https://www.llamaindex.ai/blog/evaluating-the-ideal-chunk-size-
for-a-rag-system-using-llamaindex-6207e5d3fec5

[276] James Thorne, Andreas Vlachos, Christos Christodoulopoulos, and Arpit Mittal.
2018. FEVER: a large-scale dataset for fact extraction and VERification. arXiv
preprint arXiv:1803.05355 (2018).

[277] Bing Tian, Haikun Liu, Zhuohui Duan, Xiaofei Liao, Hai Jin, and Yu Zhang.
2024. Scalable Billion-point Approximate Nearest Neighbor Search Using
{SmartSSDs}. In 2024 USENIX Annual Technical Conference (USENIX ATC 24).
1135–1150.

[278] Ajay Tirumala and RaymondWong. 2024. Nvidia blackwell platform: Advancing
generative ai and accelerated computing. In 2024 IEEE Hot Chips 36 Symposium
(HCS). IEEE Computer Society, 1–33.

[279] Ajay Tirumala and Raymond Wong. 2024. NVIDIA Blackwell Platform: Ad-
vancing Generative AI and Accelerated Computing. In 2024 IEEE Hot Chips 36
Symposium (HCS). IEEE Computer Society, 1–33.

[280] Devesh Tiwari, Simona Boboila, Sudharshan Vazhkudai, Youngjae Kim, Xi-
aosong Ma, Peter Desnoyers, and Yan Solihin. 2013. Active Flash: Towards
Energy-Efficient, In-Situ Data Analytics on Extreme-Scale Machines. In FAST.

[281] Devesh Tiwari, Sudharshan S Vazhkudai, Youngjae Kim, Xiaosong Ma, Simona
Boboila, and Peter J Desnoyers. 2012. Reducing Data Movement Costs Using
Energy-Efficient, Active Computation on SSD. In HotPower.

[282] Mahdi Torabzadehkashi, Siavash Rezaei, Vladimir Alves, and Nader
Bagherzadeh. 2018. CompStor: An In-Storage Computation Platform for Scalable
Distributed Processing. In IPDPSW.

[283] Mahdi Torabzadehkashi, Siavash Rezaei, Ali Heydarigorji, Hosein Bobarshad,
Vladimir Alves, and Nader Bagherzadeh. 2019. Catalina: In-Storage Processing
Acceleration for Scalable Big Data Analytics. In PDP.

[284] Toshiba. 2012. NAND Memory Toggle DDR1.0 Technical Data Sheet.
[285] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi,

Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open foundation and fine-tuned chat models.
arXiv preprint arXiv:2307.09288 (2023).

[286] Shivani Tripathy and Manoranjan Satpathy. 2022. SSD internal cache manage-
ment policies: A survey. Journal of Systems Architecture 122 (2022), 102334.

[287] Ozan Unlu, Jiyeon Shin, Charlotte J Mailly, Michael F Oates, Michela R Tucci,
Matthew Varugheese, Kavishwar Wagholikar, Fei Wang, Benjamin M Scirica,
Alexander J Blood, et al. 2024. Retrieval-Augmented Generation–Enabled GPT-4
for Clinical Trial Screening. NEJM AI (2024), AIoa2400181.

[288] Thomas Vecchiato, Claudio Lucchese, Franco Maria Nardini, and Sebastian
Bruch. 2024. A Learning-to-Rank Formulation of Clustering-Based Approximate

1190

REIS: A High-Performance and Energy-Efficient Retrieval System with In-Storage Processing ISCA ’25, June 21–25, 2025, Tokyo, Japan

Nearest Neighbor Search. In Proceedings of the 47th International ACM SIGIR
Conference on Research and Development in Information Retrieval. 2261–2265.

[289] Boxiang Wang, Qifan Xu, Zhengda Bian, and Yang You. 2022. Tesseract: Paral-
lelize the tensor parallelism efficiently. In Proceedings of the 51st International
Conference on Parallel Processing. 1–11.

[290] Haoyu Wang, Ruirui Li, Haoming Jiang, Jinjin Tian, Zhengyang Wang, Chen
Luo, Xianfeng Tang, Monica Cheng, Tuo Zhao, and Jing Gao. 2024. Blendfilter:
Advancing retrieval-augmented large language models via query generation
blending and knowledge filtering. arXiv preprint arXiv:2402.11129 (2024).

[291] Jianguo Wang, Dongchul Park, Yang-Suk Kee, Yannis Papakonstantinou, and
Steven Swanson. 2016. SSD In-Storage Computing for List Intersection. In
DaMoN.

[292] LiangWang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang,
Rangan Majumder, and Furu Wei. 2022. Text embeddings by weakly-supervised
contrastive pre-training. arXiv preprint arXiv:2212.03533 (2022).

[293] Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang, Rangan Majumder, and
Furu Wei. 2023. Improving text embeddings with large language models. arXiv
preprint arXiv:2401.00368 (2023).

[294] Liang Wang, Nan Yang, and Furu Wei. 2023. Query2doc: Query expansion with
large language models. arXiv preprint arXiv:2303.07678 (2023).

[295] Mengzhao Wang, Xiaoliang Xu, Qiang Yue, and Yuxiang Wang. 2021. A com-
prehensive survey and experimental comparison of graph-based approximate
nearest neighbor search. arXiv preprint arXiv:2101.12631 (2021).

[296] Shengzhe Wang, Zihang Lin, Suzhen Wu, Hong Jiang, Jie Zhang, and Bo Mao.
2024. LearnedFTL: A Learning-Based Page-Level FTL for Reducing Double Reads
in Flash-Based SSDs. In 2024 IEEE International Symposium on High-Performance
Computer Architecture (HPCA). IEEE, 616–629.

[297] Weishi Wang, Yue Wang, Shafiq Joty, and Steven CH Hoi. 2023. Rap-gen:
Retrieval-augmented patch generation with codet5 for automatic program repair.
In Proceedings of the 31st ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering. 146–158.

[298] Xiaohao Wang, Yifan Yuan, You Zhou, Chance C Coats, and Jian Huang. 2019.
Project Almanac: A Time-Traveling Solid-State Drive. In EuroSys.

[299] Yitu Wang, Shiyu Li, Qilin Zheng, Linghao Song, Zongwang Li, Andrew Chang,
Hai "Helen" Li, and Yiran Chen. 2024. NDSEARCH: Accelerating Graph-
Traversal-Based Approximate Nearest Neighbor Search through Near Data
Processing. In Proceedings of the 51st Annual International Symposium on Com-
puter Architecture.

[300] YuyueWang, Xiurui Pan, Yuda An, Jie Zhang, and Glenn Reinman. 2024. Beacon-
GNN: Large-Scale GNN Acceleration with Out-of-Order Streaming In-Storage
Computing. In 2024 IEEE International Symposium on High-Performance Com-
puter Architecture (HPCA). IEEE, 330–344.

[301] Zhiruo Wang, Jun Araki, Zhengbao Jiang, Md Rizwan Parvez, and Graham
Neubig. 2023. Learning to filter context for retrieval-augmented generation.
arXiv preprint arXiv:2311.08377 (2023).

[302] Zichao Wang, Weili Nie, Zhuoran Qiao, Chaowei Xiao, Richard Baraniuk, and
Anima Anandkumar. 2022. Retrieval-based controllable molecule generation.
arXiv preprint arXiv:2208.11126 (2022).

[303] Zheng Wang, Shu Xian Teo, Jieer Ouyang, Yongjun Xu, and Wei Shi. 2024.
M-RAG: Reinforcing Large Language Model Performance through Retrieval-
Augmented Generation with Multiple Partitions. arXiv preprint arXiv:2405.16420
(2024).

[304] Nirmalie Wiratunga, Ramitha Abeyratne, Lasal Jayawardena, Kyle Martin, Stew-
art Massie, Ikechukwu Nkisi-Orji, Ruvan Weerasinghe, Anne Liret, and Bruno
Fleisch. 2024. CBR-RAG: case-based reasoning for retrieval augmented gen-
eration in LLMs for legal question answering. In International Conference on
Case-Based Reasoning. Springer, 445–460.

[305] Guanying Wu and Xubin He. 2012. Reducing SSD Read Latency via NAND
Flash Program and Erase Suspension. In FAST.

[306] Ming-Chuan Wu and Alejandro P Buchmann. 1998. Encoded Bitmap Indexing
for Data Warehouses. In ICDE.

[307] Suzhen Wu, Yanping Lin, Bo Mao, and Hong Jiang. 2016. GCaR: Garbage
Collection aware Cache Management with Improved Performance for Flash-
based SSDs. In ICS.

[308] Chunhua Xiao, Shi Qiu, and Dandan Xu. 2022. PASM: Parallelism Aware Space
Management strategy for hybrid SSD towards in-storage DNN training acceler-
ation. Journal of Systems Architecture 128 (2022), 102565.

[309] Guangzhi Xiong, Qiao Jin, Zhiyong Lu, and Aidong Zhang. 2024. Benchmarking
retrieval-augmented generation for medicine. arXiv preprint arXiv:2402.13178
(2024).

[310] Weihong Xu, Junwei Chen, Po-Kai Hsu, Jaeyoung Kang, Minxuan Zhou, Sumukh
Pinge, Shimeng Yu, and Tajana Rosing. 2023. Proxima: Near-storage Acceleration
for Graph-based Approximate Nearest Neighbor Search in 3D NAND. arXiv
preprint arXiv:2312.04257 (2023).

[311] Jinlong Xue, Yayue Deng, Yingming Gao, and Ya Li. 2024. Retrieval Augmented
Generation in Prompt-based Text-to-Speech Synthesis with Context-Aware
Contrastive Language-Audio Pretraining. arXiv preprint arXiv:2406.03714 (2024).

[312] Ikuya Yamada, Akari Asai, and Hannaneh Hajishirzi. 2021. Efficient passage
retrieval with hashing for open-domain question answering. arXiv preprint
arXiv:2106.00882 (2021).

[313] Shiqin Yan, Huaicheng Li, Mingzhe Hao, Michael Hao Tong, Swaminathan
Sundararaman, Andrew A Chien, and Haryadi S Gunawi. 2017. Tiny-tail flash:
Near-perfect elimination of garbage collection tail latencies in NAND SSDs.
ACM Transactions on Storage (TOS) 13, 3 (2017), 1–26.

[314] Shi-Qi Yan, Jia-Chen Gu, Yun Zhu, and Zhen-Hua Ling. 2024. Corrective retrieval
augmented generation. arXiv preprint arXiv:2401.15884 (2024).

[315] Antoine Yang, Arsha Nagrani, Paul Hongsuck Seo, Antoine Miech, Jordi Pont-
Tuset, Ivan Laptev, Josef Sivic, and Cordelia Schmid. 2023. Vid2seq: Large-scale
pretraining of a visual language model for dense video captioning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 10714–
10726.

[316] Ming-Chang Yang, Yu-Ming Chang, Che-Wei Tsao, Po-Chun Huang, Yuan-Hao
Chang, and Tei-Wei Kuo. 2014. Garbage Collection and Wear Leveling for Flash
Memory: Past and Future. In SMARTCOMP.

[317] Pan Yang, Ni Xue, Yuqi Zhang, Yangxu Zhou, Li Sun, Wenwen Chen, Zhonggang
Chen, Wei Xia, Junke Li, and Kihyoun Kwon. 2019. Reducing garbage collection
overhead in {SSD} based on workload prediction. In 11th USENIX Workshop on
Hot Topics in Storage and File Systems (HotStorage 19).

[318] Sophia Yang. 2023. Advanced RAG 01: Small-to-Big Retrieval.
https://towardsdatascience.com/advanced-rag-01-small-to-big-retrieval-
172181b396d4

[319] Yongpeng Yang, Dejun Jiang, Bo Jiang, Hao-Chiang Hsu, Liang Peng, and Zifeng
Yang. 2024. LBZ: A Lightweight Block Device for Supporting F2FS on ZNS SSD.
In 2024 IEEE 42nd International Conference on Computer Design (ICCD). IEEE,
340–347.

[320] Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio,WilliamWCohen, Ruslan
Salakhutdinov, and Christopher D Manning. 2018. HotpotQA: A dataset for di-
verse, explainable multi-hop question answering. arXiv preprint arXiv:1809.09600
(2018).

[321] Yingbiao Yao, Jinlong Fan, Jie Zhou, Xiaochong Kong, and Nenghua Gu. 2021.
HDFTL: An on-demand flash translation layer algorithm for hybrid solid state
drives. IEEE Transactions on Consumer Electronics 67, 1 (2021), 50–57.

[322] Antonio Jimeno Yepes, Yao You, Jan Milczek, Sebastian Laverde, and Leah Li.
2024. Financial Report Chunking for Effective Retrieval Augmented Generation.
arXiv preprint arXiv:2402.05131 (2024).

[323] Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soojeong Kim, and Byung-
Gon Chun. 2022. Orca: A distributed serving system for {Transformer-Based}
generative models. In 16th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 22). 521–538.

[324] Hao Yu, Aoran Gan, Kai Zhang, Shiwei Tong, Qi Liu, and Zhaofeng Liu. 2024.
Evaluation of Retrieval-Augmented Generation: A Survey. arXiv preprint
arXiv:2405.07437 (2024).

[325] Cyril Zakka, Rohan Shad, AkashChaurasia, Alex RDalal, Jennifer L Kim,Michael
Moor, Robyn Fong, Curran Phillips, Kevin Alexander, Euan Ashley, et al. 2024.
Almanac—retrieval-augmented language models for clinical medicine. NEJM
AI 1, 2 (2024), AIoa2300068.

[326] Shenglai Zeng, Jiankun Zhang, Pengfei He, Yue Xing, Yiding Liu, Han Xu, Jie
Ren, Shuaiqiang Wang, Dawei Yin, Yi Chang, et al. 2024. The good and the
bad: Exploring privacy issues in retrieval-augmented generation (rag). arXiv
preprint arXiv:2402.16893 (2024).

[327] Shulin Zeng, Zhenhua Zhu, Jun Liu, Haoyu Zhang, Guohao Dai, Zixuan Zhou,
Shuangchen Li, Xuefei Ning, Yuan Xie, Huazhong Yang, et al. 2023. DF-GAS:
a Distributed FPGA-as-a-Service Architecture towards Billion-Scale Graph-
based Approximate Nearest Neighbor Search. In Proceedings of the 56th Annual
IEEE/ACM International Symposium on Microarchitecture. 283–296.

[328] Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min Zhang, and Shaoping Ma.
2022. Learning discrete representations via constrained clustering for effective
and efficient dense retrieval. In Proceedings of the Fifteenth ACM International
Conference on Web Search and Data Mining. 1328–1336.

[329] Boyu Zhang, Hongyang Yang, Tianyu Zhou, Muhammad Ali Babar, and Xiao-
Yang Liu. 2023. Enhancing financial sentiment analysis via retrieval augmented
large language models. In Proceedings of the fourth ACM international conference
on AI in finance. 349–356.

[330] Jianjin Zhang, Zheng Liu, Weihao Han, Shitao Xiao, Ruicheng Zheng, Yingxia
Shao, Hao Sun, Hanqing Zhu, Premkumar Srinivasan, Weiwei Deng, et al. 2022.
Uni-retriever: Towards learning the unified embedding based retriever in bing
sponsored search. In Proceedings of the 28th ACM SIGKDD Conference on Knowl-
edge Discovery and Data Mining. 4493–4501.

[331] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui
Chen, Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022. Opt:
Open pre-trained transformer language models. arXiv preprint arXiv:2205.01068
(2022).

[332] Wenhui Zhang, Qiang Cao, Hong Jiang, Jie Yao, Yuanyuan Dong, and Puyuan
Yang. 2019. SPA-SSD: Exploit heterogeneity and parallelism of 3D SLC-TLC
hybrid SSD to improve write performance. In 2019 IEEE 37th International

1191

ISCA ’25, June 21–25, 2025, Tokyo, Japan Chen et al.

Conference on Computer Design (ICCD). IEEE, 613–621.
[333] Yanhao Zhang, Pan Pan, Yun Zheng, Kang Zhao, Yingya Zhang, Xiaofeng Ren,

and Rong Jin. 2018. Visual search at alibaba. In Proceedings of the 24th ACM
SIGKDD international conference on knowledge discovery & data mining. 993–
1001.

[334] Penghao Zhao, Hailin Zhang, Qinhan Yu, Zhengren Wang, Yunteng Geng,
Fangcheng Fu, Ling Yang, Wentao Zhang, and Bin Cui. 2024. Retrieval-
augmented generation for ai-generated content: A survey. arXiv preprint
arXiv:2402.19473 (2024).

[335] Wayne Xin Zhao, Jing Liu, Ruiyang Ren, and Ji-Rong Wen. 2024. Dense text
retrieval based on pretrained language models: A survey. ACM Transactions on
Information Systems 42, 4 (2024), 1–60.

[336] Yiyun Zhao, Prateek Singh, Hanoz Bhathena, Bernardo Ramos, Aviral Joshi,
Swaroop Gadiyaram, and Saket Sharma. 2024. Optimizing LLM Based Retrieval
Augmented Generation Pipelines in the Financial Domain. In Proceedings of the
2024 Conference of the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies (Volume 6: Industry Track).
279–294.

[337] Zexuan Zhong, Tao Lei, and Danqi Chen. 2022. Training language models with
memory augmentation. arXiv preprint arXiv:2205.12674 (2022).

[338] Junjie Zhou, Zheng Liu, Shitao Xiao, Bo Zhao, and Yongping Xiong. 2024. VISTA:
Visualized Text Embedding For Universal Multi-Modal Retrieval. arXiv preprint

arXiv:2406.04292 (2024).
[339] Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping Huang, Vincent Zhao,

Andrew M Dai, Quoc V Le, James Laudon, et al. 2022. Mixture-of-experts with
expert choice routing. Advances in Neural Information Processing Systems 35
(2022), 7103–7114.

[340] You Zhou, Fei Wu, Ping Huang, Xubin He, Changsheng Xie, and Jian Zhou. 2015.
An Efficient Page-level FTL to Optimize Address Translation in Flash Memory.
In EuroSys.

[341] You Zhou, QiulinWu, Fei Wu, Hong Jiang, Jian Zhou, and Changsheng Xie. 2021.
{Remap-SSD}: Safely and Efficiently Exploiting {SSD} Address Remapping
to Eliminate Duplicate Writes. In 19th USENIX Conference on File and Storage
Technologies (FAST 21). 187–202.

[342] Zhenhua Zhu, Jun Liu, Guohao Dai, Shulin Zeng, Bing Li, Huazhong Yang, and
Yu Wang. 2023. Processing-In-Hierarchical-Memory Architecture for Billion-
Scale Approximate Nearest Neighbor Search. In 2023 60th ACM/IEEE Design
Automation Conference (DAC). IEEE, 1–6.

[343] Justin Zobel and Alistair Moffat. 2006. Inverted files for text search engines.
ACM computing surveys (CSUR) 38, 2 (2006), 6–es.

[344] Mohammadreza Zolfaghari, Yi Zhu, Peter Gehler, and Thomas Brox. 2021. Cross-
clr: Cross-modal contrastive learning for multi-modal video representations.
In Proceedings of the IEEE/CVF International Conference on Computer Vision.
1450–1459.

1192

