Bioinformatics, 2023, 39, i297-i307
https://doi.org/10.1093/bioinformatics/btad272

ISMB/ECCB 2023

OXFORD

RawHash: enabling fast and accurate real-time analysis of
raw nanopore signals for large genomes

1% Nika Mansouri Ghiasi
1, Haiyu Mao

1, Joel Lindegger @ *, Gagandeep Singh ® *,

1 Onur Mutlu ® "*

'Department of Information Technology and Electrical Engineering, ETH Zurich, 8092 Zurich, Switzerland

*Corresponding author. Department of Information Technology and Electrical Engineering, ETH Zurich, Gloriastrasse 35, 8092 Zurich, Switzerland.
E-mail: fitinac@ethz.ch (C.F.), omutlu@ethz.ch (0.M.)

Can Firtina
Meryem Banu Cavlak

Abstract

Summary: Nanopore sequencers generate electrical raw signals in real-time while sequencing long genomic strands. These raw signals can be
analyzed as they are generated, providing an opportunity for real-time genome analysis. An important feature of nanopore sequencing, Read
Until, can eject strands from sequencers without fully sequencing them, which provides opportunities to computationally reduce the sequencing
time and cost. However, existing works utilizing Read Until either (i) require powerful computational resources that may not be available for porta-
ble sequencers or (ii) lack scalability for large genomes, rendering them inaccurate or ineffective. We propose RawHash, the first mechanism
that can accurately and efficiently perform real-time analysis of nanopore raw signals for large genomes using a hash-based similarity search. To
enable this, RawHash ensures the signals corresponding to the same DNA content lead to the same hash value, regardless of the slight varia-
tions in these signals. RawHash achieves an accurate hash-based similarity search via an effective quantization of the raw signals such that sig-
nals corresponding to the same DNA content have the same quantized value and, subsequently, the same hash value. We evaluate RawHash
on three applications: (i) read mapping, (i) relative abundance estimation, and (iii) contamination analysis. Our evaluations show that RawHash is
the only tool that can provide high accuracy and high throughput for analyzing large genomes in real-time. \When compared to the state-of-the-art
technigues, UNCALLED and Sigmap, RawHash provides (i) 25.8x and 3.4x better average throughput and (ii) significantly better accuracy for

large genomes, respectively. Source code is available at https://github.com/CMU-SAFARI/RawHash.

1 Introduction

High-throughput sequencing (HTS) devices can generate a
large amount of genomic data at a relatively low cost. HTS
can be used to analyze a wide range of samples, from small
amounts of DNA or RNA to entire genomes. Oxford
Nanopore Technologies (ONT) is one of the most widely
used HTS technologies that can sequence long genomic
regions, called reads, with up to a few million bases. ONT
devices use the nanopore sequencing technique, which
involves passing a single DNA or RNA strand through a tiny
pore, nanopore or channel, at an average speed of 450 bases
per second (Kovaka et al. 2021) and measuring the electrical
current as the strand passes through. Nanopore sequencing
enables two key features. First, nanopores provide the electri-
cal raw signals in real-time as the DNA strand passes through
a nanopore. Second, nanopore sequencing provides a func-
tionality, known as Read Until (Loose et al. 2016), that can
partially sequence DNA strands without fully sequencing
them. These two features of nanopores provide opportunities
for (i) real-time genome analysis and (ii) significantly reducing
sequencing time and cost.

Real-time analysis of nanopore raw signals using Read Until
can reduce the sequencing time and cost per read by terminating
the sequencing of a read whenever sequencing the full read is
not necessary. The freed-up nanopore can then be used to se-
quence a different read. A purely computational mechanism can
send a signal to eject a read from a nanopore by reversing the
voltage if the partial sequencing of a read meets certain condi-
tions for particular genome analysis, such as (i) reaching a

desired coverage for a species in a sample (Payne et al. 2021) or
(i1) identifying that a read does not originate from a certain ge-
nome of interest (i.e. a target region; Kovaka et al. 2021; Zhang
et al. 2021) and hence, does not need to be fully sequenced. By
terminating the sequencing of reads that do not correspond to
the target region, the sequencer can spend time and resources on
higher coverage sequencing of the reads that correspond to the
target. This process is referred to as nanopore adaptive sam-
pling. By providing high coverage at target regions and avoiding
unessential sequencing of reads outside those regions, this ap-
proach can improve the quality of sequencing and the down-
stream analysis utilizing the obtained data.

To effectively utilize adaptive sampling in nanopore se-
quencing, it is crucial to have computational methods that
can accurately analyze the raw output signals from nanopores
in real-time. These methods must provide (i) low latency and
(ii) throughput matching or exceeding that of the sequencer
(Dunn et al. 2021; Kovaka et al. 2021; Zhang et al. 2021).
Several works propose adaptive sampling methods for real-
time analysis of raw nanopore signals (Edwards et al. 2019;
Bao et al. 2021; Dunn et al. 2021; Kovaka et al. 2021; Payne
et al. 2021; Zhang et al. 2021; Shih et al. 2022; Ulrich et al.
2022; Sadasivan et al. 2023; Senanayake et al. 2023).
However, these works have three key limitations. First, most
techniques mainly use powerful computational resources,
such as GPUs (Bao et al. 2021; Payne et al. 2021), or special-
ized hardware (Dunn et al. 2021; Shih et al. 2022) due to the
use of computationally intensive algorithms such as basecall-
ing as we explain in detail in Supplementary Section S1. This

© The Author(s) 2023. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

€202 420100 || uo Jasn younz H13 Aq 0t¥0LZ./262!/L Jusws|ddng/6E/a[01e/Sol1ewIoulold/wod dno olwapede//:sdiy woly pspeojumoq

https://orcid.org/0000-0002-6548-7863
https://orcid.org/0000-0002-0833-0042
https://orcid.org/0000-0003-2581-8637
https://orcid.org/0000-0002-3502-7401
https://orcid.org/0000-0003-4475-6945
https://orcid.org/0000-0002-7393-4504
https://orcid.org/0000-0002-0075-2312
https://github.com/CMU-SAFARI/RawHash
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad272#supplementary-data

i298

can make real-time genome analysis challenging for portable
and low-cost nanopore-based sequencers, such as the ONT
Flongle or MinION, which are not typically equipped with
such resources. Therefore these techniques introduce chal-
lenges for using them in resource-constrained environments.
Second, the sheer size of genomic data at the scale of large
genomes (e.g. human genome) makes it challenging to process
the data in real-time. This is because such large genomes re-
quire efficient and accurate similarity identification across a
large number of regions. This renders many current methods
(Kovaka et al. 2021; Zhang et al. 2021) inaccurate or useless
for large genomes as they cannot either provide accurate
results or match the throughput of nanopores for these
genomes. Third, machine learning models used in past works
(Edwards et al. 2019; Payne et al. 2021; Bao et al. 2021;
Ulrich et al. 2022; Senanayake et al. 2023) to analyze raw
nanopore signals often require retraining or reconfiguring the
model to improve accuracy for a certain experiment, which
can be a barrier to flexibly and easily performing real-time
analysis without retraining or reconfiguring these models. To
our knowledge, there is no work that can efficiently and accu-
rately perform real-time analysis of raw nanopore signals on
a large scale (e.g. whole-genome analysis for human) without
requiring powerful computational resources, which can easily
and flexibly be applied to a wide range of applications that
could benefit from real-time nanopore raw signal analysis.
Our goal is to enable efficient and accurate real-time ge-
nome analysis for large genomes. To this end, we propose
RawHash, the first mechanism that can efficiently and accu-
rately perform real-time analysis of raw nanopore signals for
large genomes in resource-contained environments. Unlike all
the past works, RawHash is the only mechanism that can effi-
ciently scale to large genomes and perform accurate real-time
genomic analysis without requiring computationally intensive
algorithms such as basecalling. Our key idea is to encode
regions of the raw nanopore signal into hash values such that
similar signal regions can efficiently be identified by matching
their hash values, facilitating efficient similarity identification
between signals. However, enabling accurate hashing-based
similarity identification in the raw signal domain is challeng-
ing because raw signals corresponding to the same DNA con-
tent are unlikely to have exactly the same signal amplitudes.
This is because the raw signals generated by nanopores can
vary each time the same DNA fragment is sequenced due to
several factors impacting nanopores during sequencing, such
as variations in the properties of the nanopores or the condi-
tions in which the sequencing is performed (David et al.
2017). Although the similarity identification of raw signals is
possible via calculating the Euclidean distance between a se-
quence of signals in a multi-dimensional space (Zhang et al.
2021), such an approach can become impractical when deal-
ing with larger sequences as the number of dimensions
increases with the length of the sequences. This increase in di-
mensionality can lead to computational complexity and the
curse of dimensionality, making it expensive and impractical.
To address these challenges, RawHash provides three key
mechanisms for efficient signal encoding and similarity identi-
fication. First, RawHash encodes signal values that have a
wider range of values into a smaller set of values using a
quantization technique, such that signal values within a cer-
tain range are assigned to the same encoded value. This helps
to alleviate the probability of having varying signal values for
the same DNA content and enables RawHash to directly

Firtina et al.

match these values using a hashing technique. Second,
RawHash concatenates the quantized values of multiple con-
secutive signals and generates a single hash value for them.
The hashing mechanism enables RawHash to efficiently iden-
tify similar signal regions of these consecutive signal values by
directly matching their corresponding hash values.
Representing many consecutive signals with a single hash
value increases the size of the regions examined during simi-
larity identification without suffering from the curse of dimen-
sionality. Using larger regions can substantially reduce the
number of possible matching regions that need to be exam-
ined. RawHash is the first work that can accurately use hash
values in the raw signal domain, which enables using efficient
data structures commonly used in the sequence domain (e.g.
hash tables in minimap2; Li 2018). Third, RawHash uses an
existing algorithm, known as chaining (Li 2018), to find the
colinear matches of hash values between signals to identify
similar signal regions. These efficient and accurate mecha-
nisms enable RawHash to perform real-time genome analysis
for large genomes.

While our proposed three key mechanisms have the poten-
tial to be used for various purposes in raw signal similarity
identification, we design RawHash as a tool for mapping
nanopore raw signals to their corresponding reference
genomes in real-time. RawHash operates the mapping in two
steps (i) indexing and (ii) mapping. First, in the indexing step,
RawHash (i) converts the reference genome sequence into
expected signal values by simulating the expected behavior of
nanopores based on a previously known model, (ii) generates
the hash values from these signals, and (iii) stores the hash
values in a hash table for efficient matching. Second, in the
mapping step, RawHash (i) generates the hash values from
the raw signals in a streaming fashion, (ii) queries the hash ta-
ble from the indexing step with these hash values to find the
matching regions in the reference genome with the same hash
value, and (iii performs chaining to find the similar region be-
tween the reference genome and the raw signal of a read.

RawHash can utilize the unique functionalities of nanopore
sequencing to reduce the sequencing time and cost in two
ways. First, to avoid redundant sequencing and processing of
each read, RawHash can use Read Until to eject a read before
it is fully sequenced if RawHash identifies that the sequenced
portion of the read can already be mapped to a reference ge-
nome. Second, to perform a cost- and time-efficient relative
abundance estimation, RawHash can utilize Run Until to fully
stop the entire sequencing of all subsequent reads after se-
quencing a certain amount of reads i.e. sufficient to make an
accurate relative abundance estimation. We refer to such us-
age during abundance estimation as Sequence Until. Avoiding
the redundant sequencing of further reads that are unlikely to
substantially change the relative abundance estimation has
the potential to significantly reduce the sequencing time and
cost. To utilize Sequence Until, RawHash integrates a confi-
dence calculation mechanism that evaluates the relative abun-
dance estimations in real-time and fully stops the entire
sequencing run if using more reads does not change its estima-
tion. To stop the entire sequencing run for further reads, Run
Until can be used to stop the entire sequencing run, which can
enable the better utilization of nanopores. We find that
Sequence Until can be applied to other mechanisms (e.g.
UNCALLED) that can perform real-time relative abundance
estimations. Prior work (Weilguny et al. 2023) proposes a
technique to terminate the sequencing process when species in

€202 420100 || uo Jasn younz H13 Aq 0t¥0LZ./262!/L Jusws|ddng/6E/a[01e/Sol1ewIoulold/wod dno olwapede//:sdiy woly pspeojumoq

RawHash

the sample reach a certain coverage depth. The key difference
of Sequence Until is that it reduces the cost of sequencing for
relative abundance estimation and is based on our adaptive,
accurate, and low-cost confidence calculation during real-
time abundance estimation.

We evaluate RawHash on three important applications
that can benefit from real-time genome analysis: (i) read map-
ping, (ii) relative abundance estimation, and (iii) contamina-
tion analysis. We compare RawHash with the state-of-the-art
approaches, UNCALLED and Sigmap, which can be used
with nanopore sequencers that may not be equipped with
GPUs, such as the MinlION devices. We evaluate RawHash,
UNCALLED, and Sigmap in terms of their performance, ac-
curacy, and their estimated benefits in reducing the sequenc-
ing time and cost.

This article provides the following key contributions and
major results:

* We propose RawHash, the first mechanism that can effi-
ciently and accurately find the similarities between raw
nanopore signals and a reference genome for large
genomes without requiring powerful computational
resources such as GPUs.

We propose the first sampling mechanism that can stop
the entire sequencing run for certain applications when an
accurate decision can be made without sequencing the en-
tire sample, which we call Sequence Until.

We extensively evaluate RawHash by comparing it with
state-of-the-art approaches, UNCALLED and Sigmap, on
various datasets ranging from small genomes (i.e. genomes
with up to 100 million bases) to large genomes (e.g. hu-
man genome). Our results show that RawHash provides
(i) comparable accuracy to UNCALLED and Sigmap for
small genomes and (ii) significantly better accuracy for
large genomes than UNCALLED and Sigmap.

We show that Sigmap cannot perform real-time genome
analysis for large genomes as it cannot match the through-
put of nanopores.

We provide the open source implementation of RawHash
and the complete set of scripts to reproduce the results
shown in this paper at https://github.com/CMU-SAFARY/
RawHash.

2 Methods

We propose RawHash, a mechanism that can efficiently and
accurately identify similarities between raw nanopore signals
of a read and a large reference genome in real-time (i.e. while
the read is sequenced). The raw nanopore signal of each read
is a series of electrical current measurements as a strand of
DNA passes through a nanopore. The reference genome is a
set of strings over the alphabet &, ¢, @, T. RawHash pro-
vides the mechanisms for generating hash values from both a
raw nanopore signal and a reference genome such that similar
regions between the two can be efficiently and accurately
found by matching their hash values.

2.1 Overview

Figure 1 shows the overview of how RawHash identifies simi-
larities between raw nanopore signals of a read and a refer-
ence genome in four steps. First, RawHash pre-processes both
(i) the raw nanopore signal and (ii) the reference genome into
values that are comparable to each other. For raw signals,

i299

Reference Genome
[..GCTATTACCTTAATGTG... |

Nanopore Raw Signal

!
| e e

= :
220 o] Gl [z 1]

...... T :
(O (=0 e Ce])

")
0x01 Store f* Hash | Query 0x01
| Table

. T Chaining &
9 Matching Regions Mapping

Figure 1. Overview of RawHash.

RawHash segments the raw signal into non-overlapping
regions such that each region is expected to contain a certain
amount of signal values that are generated from reading a
fixed number k& of DNA bases. Each such region is called an
event (David et al. 2017). Each event is usually represented
with a value derived from the signal values in the segment.
For the reference genome, RawHash translates each substring
of length k (called a k-mer) into their expected event values
based on the nanopore model.

The event values from the reference genome are not directly
comparable to the event values from raw nanopore signals
due to variability in the current measurements in nanopores
generating slightly different event values for the same k-mer
(David et al. 2017). To generate the same values from slightly
different events that may contain the same k-mer information,
the second step of RawHash quantizes the event values from
a larger set of values into a smaller set. The quantization tech-
nique ensures that the event values within a certain range are
likely to be assigned to the same quantized value such that the
effect of signal variation is alleviated, i.e. the same k-mer is
likely assigned the same quantized value.

Due to the nature of nanopores, each event usually repre-
sents a very small k-mer of length around k = 6 bases, depend-
ing on the nanopore model (Zhang et al. 2021). Such a short
k-mer is likely to exist in a large number of locations in the
reference genome, making it challenging to efficiently identify
the correct one. To make the events more unique (i.e. such
that they exist only in a small number of locations in the refer-
ence genome), the third step of RawHash combines multiple
consecutive quantized events into a single hash value. These
hash values can then be used to efficiently identify similar
regions between raw signals and the reference genome by
matching the hash values generated from their events using ef-
ficient data structures such as hash tables.

Fourth, to map a raw nanopore signal of a read to a refer-
ence genome, RawHash uses a chaining algorithm (Li 2018;
Zhang et al. 2021) that find colinear matching hash values
generated from regions that are close to each other both in the
reference genome and the raw nanopore signal.

2.2 Event generation

Our goal is to translate a reference genome sequence and a
raw nanopore signal into comparable values. To this end,
RawHash converts (i) each k-mer of the reference genome

€202 420100 || uo Jasn younz H13 Aq 0t¥0LZ./262!/L Jusws|ddng/6E/a[01e/Sol1ewIoulold/wod dno olwapede//:sdiy woly pspeojumoq

https://github.com/CMU-SAFARI/RawHash
https://github.com/CMU-SAFARI/RawHash

i300
Reference Genome Expected Normalized
..GCTATTACC... Event Values Event Values
) -
i GCTATT Koot 105.757390 221
= CTATTA Model .- 81.740642 - (-09]
g TATTAC (Lookup 103.170091 1.15
E ATTACC Table) | 101.082485 -

Figure 2. Converting sequences to event values based on the k-mer
model of a nanopore.

and (ii) each segmented region of the raw signal into its corre-
sponding event.

Sequence-to-event conversion: To convert a reference ge-
nome sequence into a form that can be compared with raw
nanopore signals, RawHash converts the reference genome se-
quence into event values in three steps, as shown in Fig. 2.

First, RawHash extracts all k-mers from the reference ge-
nome sequence, where k depends on the nanopore. The k-mer
model of a nanopore includes the information about the
expected k-mer length of an event and the expected average
event value for each k-mer based on certain variables affecting
the signal outcome of the nanopore’s current measurements.
For many nanopore models, ONT provides the k-mer model
including recent R10 and R10.4. These models can also be
generated by users (Simpson et al. 2017).

Second, RawHash queries the k-mer model for each k-mer
of the reference genome to convert k-mers into their expected
event values. Although the k-mer model of a nanopore pro-
vides an extensive set of information for each possible k-mer,
RawHash uses only the mean values of events that provide an
average value for the signals in the same event since these
mean values provide a sufficient level of meaningful informa-
tion for comparison with the raw nanopore signals.

Third, RawHash normalizes the event values from the same
reference genome sequence (e.g. entire chromosome sequence
or a contig) by calculating the standard scores (i.e. z-scores) of
these events. RawHash uses these normalized values as event
values since the same normalization step is taken for raw sig-
nals to avoid certain variables that may affect the range of
raw signal amplitudes during sequencing (Kovaka et al. 2021;
Zhang et al. 2021).

Signal-to-event conversion: Our goal is to accurately con-
vert the series of raw nanopore signals into a set of values
where each value corresponds to certain DNA sequences of
fixed length k, k-mers, and consecutive values differ by one
base. To achieve this, RawHash converts the raw signals into
their corresponding values in three steps, as shown in Fig. 3.
First, to accurately identify the distinct regions in the raw sig-
nal that correspond to a certain k-mer from DNA, RawHash
performs a segmentation step as described in a basecalling
tool, Scrappie, and used by earlier works UNCALLED and
Sigmap. The segmentation step aims to eliminate the factors
that affect the speed of the DNA molecules passing through a
nanopore, as the speed affects the number of signal measure-
ments taken for a certain amount of bases in DNA. To per-
form the segmentation step, RawHash identifies the
boundaries in the signal where the signal value changes signif-
icantly compared to the certain amount of previously mea-
sured signal values, which indicates a base change in the
nanopore. Such boundaries are computed using a statistical
test, known as Welch’s t-test (Ruxton 2006), over a rolling
window of consecutive signals. RawHash performs this t-test
for multiple windows of different lengths to avoid the

Firtina et al.

Mean Value
ofan Event |
0

Nanopore Event
Raw Signal —

=

i O i L U
Mean Point of an
Event (Mean Value)

Figure 3. Detecting events from raw signals.

variables that cause a change in the number of current meas-
urements due to the varying speed of DNA through a nano-
pore, known as skip and stay errors (David et al. 2017).
Signals that fall within the same segment (i.e. between the
same measured boundaries) are usually called events since
each event contains the signals from a reading of a fixed
amount of DNA bases, k-mers.

Second, since the number of signals that each event includes
is not constant across different events due to the stay and skip
errors, RawHash generates a single value for each event to
quickly avoid these potential errors and other factors that
cause variations from reading the same amount of DNA
bases. To this end, RawHash measures the mean value of the
signals that fall within the same segment and uses this mean
value for an event.

Third, since the amplitudes of the signal measurements may
significantly vary when reading k-mers at different times,
RawHash normalizes the mean event values using the event val-
ues generated from the nanopore within the same certain time
interval in a streaming fashion. Although this time interval pa-
rameter can be modified in our tool, the default configuration of
RawHash processes the events of signals generated by the nano-
pore within one second. For normalization, RawHash uses the
same z-score calculation that it uses for normalizing the event
values generated from reference sequences as described earlier.
RawHash uses these normalized values as event values when
comparing with the event values from reference sequences.

2.3 Quantization of events

Our goal is to avoid the effects of generating different event val-
ues when reading the same k-mer content from nanopores so
that we can identify k-mer matches by directly matching events.
Although the segmentation and normalization steps explained
in Section 2.2 can avoid the potential sequencing errors, such as
stay and skip errors and significant changes in the current read-
ings at different times, these approaches still do not guarantee
to generate exactly the same event values when reading the
same k-mer content. This is because slight changes in the nor-
malized event values may occur when reading the same DNA
content due to the high sensitivity and stochasticity of nano-
pores (David et al. 2017). Thus, it is challenging to generate the
same event value for the same k-mer content after the segmenta-
tion and normalization steps. Since these event values generated
from reading the same k-mer content are expected to be close to
each other (Zhang et al. 2021), we propose a quantization
mechanism that encodes event values so that events with close
mean values can have the same quantized value in two steps as
shown in Fig. 4.

First, to increase the probability of assigning the same value
for similar event values, RawHash trims the least significant
fractional part of mean values by using only the most signifi-
cant Q bits of these mean event values from their binary for-
mat, which we represent as E[1, Q] for simplicity where E is
the event value and E[1, Q] gives the most significant Q bits
of E. We assume that the mean event values are represented

€202 420100 || uo Jasn younz H13 Aq 0t¥0LZ./262!/L Jusws|ddng/6E/a[01e/Sol1ewIoulold/wod dno olwapede//:sdiy woly pspeojumoq

RawHash

-0.091 in Binary: -0.084 in Binary:
N 9 9 N 3 3 3 N N (£ EN o 3
A ——— ———

Most significant @ = 9 bits:

[1o[a[s[x 2 o]1]4]

[—— [——
Pruning p = 4 bits: Pruning p = 4 bits:

[1oJo] 1] Event Vaues [:]o]o]2]1]

Figure 4. Quantization of two event values.

Most significant @ = 9 bits:

(o[]i[a s o o 4]

by the standard single-precision floating-point format with
the sign, exponent, and fraction bits. This enables RawHash
to reduce the wide range of floating-point numbers into a
smaller range without significantly losing from the accuracy
such that event values closer to each other can be represented
by the same value in the smaller range of values. We can per-
form this trimming technique without significant sensitivity
loss because we observe that these normalized event values
mostly use at most six digits from the fractional part of their
values, leaving a large number of fractional bits useless.

Second, to avoid using redundant bits that may carry little
or no information in the most significant Q bits of an event
value, RawHash prunes p bits after the most significant two
bits of E[1, Q] such that 2+ p < Q and the resulting quan-
tized value is E[1,2]E[3 + p, Q]. For simplicity, we show the
quantized value of E as Eg . By ignoring these p bits, we ef-
fectively pack Q bits into Q — p bits without losing significant
information from event values. We can perform such a prun-
ing operation because we observe that the normalized event
values are usually in the range [—3, 3] such that these p bits
provide little information in distinguishing different event val-
ues due to the small range of values. We note that these Q
and p values are parameters to RawHash and can empirically
be adjusted based on the required sensitivity and quantization
efficiency. This quantization technique enables RawHash to
assign the same quantized values for a pair of close event val-
ues, E and F, that may be generated from reading the same k-
mer such that Eg, = Fo, where |E — F| < € and ¢ is small
enough for two events to represent the same k-mer content.
RawHash always uses the most significant two bits as these
two bits consistently carry the most significant information of
the normalized event values, including the sign bit.

2.4 Generating the Hash values

Our goal is to generate values for large regions of raw nano-
pore signals and reference sequences such that these values
can be used to efficiently and accurately identify similarities
between raw signals and a reference genome. To this end,
RawHash generates hash values using quantized values of
events in two steps, as shown in Fig. 5. First, to avoid finding
a large number of matches, RawHash uses the quantized val-
ues of 7 consecutive events to pack them in # x (Q — p) bits
while preserving the order information of these consecutive
events. RawHash uses several consecutive events in a single
hash value because matching a single event is likely to gener-
ate a larger number of matches for larger genomes as a single
event usually corresponds to a k-mer of 6-9 bases depending
on the nanopore model (David et al. 2017). It is essential to
use several consecutive events to reduce the number of match-
ing regions between raw signals and the reference genome by
increasing the region that these consecutive events span.
Second, to efficiently and accurately find matches between
large regions of raw signals and a reference genome using a

i301

Quantized Values (in binary) of n Consecutive Events:

[lilofoft] [o]o[s]a]o] .. [of1]o]o]1]

~

([EEEEEAMT . SEEE
|

32-bit Hash Value
of n Events

0x400D70A4

Figure 5. Generating a hash value from n consecutive quantized event
values.

constrained space, RawHash uses a low collision hash func-
tion to generate a 32-bit hash value from n x (Q — p) bits of
n consecutive quantized event values. Since # x (Q — p) can
be >32, using such a hash function is likely to increase the
collision rate for dissimilar regions. To avoid inaccurate simi-
larity identifications due to these incorrect collisions,
RawHash requires several matches of hash values within close
proximity for similarity identification, which we explain next.

2.5 Seeding and mapping

To efficiently identify similarities, RawHash uses hash values
generated from raw nanopore signals and the reference genome
in two steps. First, RawHash efficiently identifies matching
regions between raw nanopore signals and a reference genome
by matching their hash values. These hash values used for
matching are usually known as seeds. Matching seeds enable ef-
ficiently finding similar regions between raw nanopore signals
and a reference genome. Second, RawHash uses the chaining al-
gorithm proposed in Sigmap (Zhang et al. 2021) to identify the
best colinear matching seeds that are close to each other in both
raw nanopore signal and a reference genome. The region that
the best chain of seed matches cover is the mapping position
that RawHash identifies as a similar region.

The chaining algorithm is useful for two reasons. First, the
chaining algorithm can tolerate mismatches and indels as it
allows including gaps between seed matches, which enables
finding similar regions with many seed matches without requir-
ing the entire region to match exactly, as shown in
Supplementary Table S2. Second, incorrect seed matches due to
collisions or our quantization mechanism that may generate the
same quantized value for distinctly dissimilar events are likely
to be filtered in the chaining step due to the difficulty of finding
colinear seed matches in highly dissimilar regions. We note that
we modify the original chaining algorithm in Sigmap by dis-
abling the distance coefficient as RawHash does not calculate
the distance between seed matches.

To efficiently map raw signals to a reference genome,
RawHash provides efficient data structures. To this end,
RawHash uses hash tables to store the hash values generated
from reference genomes (i.e. the indexing step) and efficiently
query the same hash table with the hash values generated
from the raw signal as the read is sequenced from a nanopore
to find positions in the reference genome with matching hash
values. RawHash uses the events in chunks (i.e. collection of
events generated within a certain time interval) to find seed
matches and perform chaining in a streaming fashion such
that the chaining computation from previous chunks (i.e. seed
matches) is transferred to the next chunk if the mapping is un-
successful for the current chunk.

€202 420100 || uo Jasn younz H13 Aq 0t¥0LZ./262!/L Jusws|ddng/6E/a[01e/Sol1ewIoulold/wod dno olwapede//:sdiy woly pspeojumoq

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad272#supplementary-data

i302

3 Results
3.1 Evaluation methodology

We implement RawHash as a tool for mapping raw nanopore
signals to a reference genome. Similar to regular read map-
ping tools, RawHash has two steps to complete the mapping
process: (i) indexing the reference genome and (ii) mapping
raw signals. Although indexing is usually a one-time task that
can be performed prior to the mapping step, the indexing of
RawHash can be performed relatively quickly within a few
minutes for large genomes (Supplementary Table S3).
RawHash provides the mapping information using a standard
pairwise mapping format. In our implementation, we provide
an extensive set of parameters that allow configuring several
options to fit RawHash for many other applications and
nanopore models that we do not evaluate, such as configuring
details about the nanopore model (e.g. number of bases per
second), number of events that can be included in a single
hash value, range of bits to quantize, enabling seeding techni-
ques such as minimizers and fuzzy seed matching. We also
provide a default set of parameters that we empirically choose
for each common application of real-time genome analysis.
These default parameters are set to accurately and efficiently
analyze (i) very small (e.g. viral) genomes, (ii) small and mid-
sized genomes (i.e. genomes with less than a few hundred mil-
lion bases), (iii) large genomes (e.g. genomes with a few billion
bases such as a human genome). We show the details regard-
ing these parameter selections and the versions of tools in
Supplementary Tables S5-S7.

We evaluate RawHash in terms of its performance, peak
memory usage, accuracy, and estimated benefits in sequencing
time and cost compared to two state-of-the-art tools
UNCALLED and Sigmap. For performance, we evaluate the
throughput and overall runtime of each tool in terms of the
number of bases they can process per second. Throughput
determines if the tool is at least as fast as the speed of DNA
passing through a nanopore. For many nanopore models (e.g.
R9.4), a DNA strand passes through a pore at around 450
bases per second (Kovaka et al. 20215 Zhang et al. 2021). It is
essential to provide a throughput higher than the throughput
of the nanopore to enable real-time genome analysis. To cal-
culate the throughput, we use the tool that UNCALLED pro-
vides, UNCALLED pafstats, which measures the
throughput of the tool from the number of bases that the tool
processes and the time it takes to process those bases.
Although theoretically, it is not possible to exceed the
throughput of a nanopore due to the speed of raw signal gen-
eration, for comparison purposes, such a limitation is ignored
by UNCALLED pafstats. For overall runtime, we calculate
CPU time and real-time using 32 threads. CPU time shows the
overall amount of CPU seconds spent running a tool, while
real-time shows the overall elapsed (i.e. wall clock) time. All
of these tools support multi-threading, where multiple reads
can be mapped simultaneously using a single thread for each
read. For all of these tools, assigning a larger number of
threads enables processing a larger number of reads in paral-
lel, similar to the behavior of nanopore sequencers with hun-
dreds to thousands of pores (i.e. channels). We note that the
throughput and mapping time per read values are not affected
by the thread counts as (i) these are measured per read and (ii)
single thread performs the mapping of a single read.

For accuracy, we evaluate the correctness of the mapping
positions that each tool provides when compared to the
ground truth mapping positions. To generate the ground

Firtina et al.

truth mapping, we use a read mapping tool, minimap2 (Li
2018), to map the basecalled sequences of raw nanopore sig-
nals to their corresponding whole-genome references. We use
UNCALLED pafstats to compare the mapping output of a
tool with the ground truth mapping to find the number of
true positives or TP (i.e. correct mappings), false positives or
FP (i.e. incorrect mappings), and false negatives or FN (i.e.
unmapped reads that are mapped in ground truth). Correct
and incorrect mappings are identified based on the distance of
the mapping positions between ground truth and the tool. To
evaluate the accuracy, we calculate the precision
(P =TP/(TP + FP)), recall (R =TP/(TP + FN)) and the F;
(Fi =2 x (P x R)/(P + R)) values.

For estimating the benefits in sequencing time and cost of
each tool, we calculate the average length of sequenced bases
per read when using UNCALLED and RawHash and the av-
erage number sequenced chunk of signals for Sigmap and
RawHash. We compare RawHash with Sigmap in terms of
the number of chunks because Sigmap does not provide the
number of bases when a read is unmapped, while both tools
provide the number of chunks used when a read is mapped or
unmapped. These chunks include a portion of the signal pro-
duced by a nanopore within a certain time interval, which is
by default set as one second of data for both RawHash and
Sigmap. The average length of bases and the number of
chunks determine the estimations of how quickly each tool
can make a mapping decision to activate Read Until before se-
quencing the remaining portion of a read, which indicates the
potential savings from overall sequencing time and cost.

We evaluate RawHash, UNCALLED, and Sigmap for three
applications (i) read mapping, (ii) relative abundance estima-
tion, and (iii) contamination analysis. Read mapping aims to
map the raw signals to their corresponding reference
genomes. Relative abundance estimation measures the abun-
dance of each genome relative to other genomes in the same
sample by mapping raw signals to a given set of reference
genomes. Contamination analysis aims to identify if a sample
is contaminated with a certain genome (e.g. a viral genome)
by mapping raw signals to the reference genome that the sam-
ple may be contaminated with. For each tool, we use their de-
fault parameter settings in our evaluation.

To evaluate each of these applications, we use real datasets
that we list in Table 1. These datasets include both raw nano-
pore signals in the FASTS format and their corresponding
basecalled sequences in the FASTA format. We note that
RawHash can also use PODS5 files. For relative abundance es-
timation, we create a mock community using all the read sets
from datasets D1 to D5, and the reference genome is the com-
bination of reference genomes used in these datasets. We
slightly modify the reference genome we use in the relative
abundance estimation such that the sequence IDs in the refer-
ence genome provide additional information about the species
(e.g. taxonomy IDs) to enable calculating relative abundance
in real-time. For contamination analysis, we combine the
SARS-CoV-2 read sets (D1) with human read sets (D5) to
identify if the combined sample is contaminated with the
SARS-CoV-2 sample by mapping raw signals in the combined
set to the SARS-CoV-2 reference genome. For all evaluations,
we use the AMD EPYC 7742 processor at 2.26 GHz to run
the tools.

Evaluating Sequence Until: Our goal is to avoid redundant
sequencing to reduce sequencing time and cost for relative
abundance estimation. We find that the Run Until mechanism

€202 420100 || uo Jasn younz H13 Aq 0t¥0LZ./262!/L Jusws|ddng/6E/a[01e/Sol1ewIoulold/wod dno olwapede//:sdiy woly pspeojumoq

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad272#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad272#supplementary-data

RawHash

Table 1. Details of datasets used in our evaluation.

i303

Organism Reads (#) Bases (#) SRA accession Reference genome Genome size
Read mapping
D1 SARS-CoV-2 1382016 594MP CADDE Centre GCF_009858895.2 29903
D2 E.coli 353317 2365M ERR9127551 GCA_000007445.1 M
D3 Yeast 49989 380M SRR8648503 GCA_000146045.2 12M
D4 Green algae 29933 609M ERR3237140 GCF_000002595.2 111M
DS Human HG001 269507 1584M FAB42260 T2T-CHM13 (v2) 3117M
Nanopore WGS
Relative abundance estimation
D1-D5? 2084762 5531M D1-D5 D1-D5 3246M
Contamination analysis
D1, DS 1651523 2178M D1, DS D1 29903

@ Dataset numbers (e.g. D1-D5) show the combined datasets.
Base counts in millions (M).

can be utilized to fully stop the sequencing run when the real-
time relative abundance estimation reaches a certain confi-
dence level to achieve accurate estimations, which we call
Sequence Until. While a similar mechanism is evaluated to en-
rich the coverage depth of low-abundance species (Weilguny
et al. 2023) using Read Until, we evaluate the potential bene-
fits of Run Until for low-cost relative abundance estimations.
We integrate a real-time confidence calculation mechanism in
RawHash to activate the Sequence Until mechanism in three
steps. First, RawHash measures the relative abundance esti-
mation after every n reads that can be mapped to a reference
genome in real-time. Second, to identify if the recently
mapped reads provide substantial changes in the abundance
estimations, RawHash performs a cross-correlation calcula-
tion between the last w estimations. Cross-correlation can
identify outliers from a set of estimations to identify if the out-
lier is substantially different than other estimations, which
indicates that recent reads can still change the relative abun-
dance estimation, and more reads should be sequenced from
the sample. Third, RawHash activates Sequence Until by fully
stopping the sequencing using Run Until when there are no
outliers in the last w estimations, which indicates a conver-
gence to a certain relative abundance estimation, and further
sequencing is unlikely to change this estimation. RawHash
provides a set of parameters to adjust these parameters related
to Sequence Until.

We evaluate the benefits of Sequence Until by comparing (i)
RawHash without Sequence Until and (ii) RawHash with
Sequence Until in terms of (i) the difference in the relative
abundance estimations and (ii) the estimated benefits in se-
quencing time and cost. To evaluate Sequence Until in a real-
istic sequencing environment where reads from different
species can be sequenced in a random order, we randomly
shuffle the reads in the relative abundance dataset and gener-
ate a set of 50 000 reads with a random order of species so
that we can simulate this random behavior. We also find that
Sequence Until can be applied to other mechanisms. To evalu-
ate the potential benefits of Sequence Until, we simulate the
benefits when using UNCALLED with Sequence Until and
compare it with RawHash.

3.2 Performance and peak memory

Figure 6 shows the throughput of regular nanopores that we
use as a baseline and the throughput of the tools when map-
ping raw nanopore signals to each dataset for read mapping,
contamination analysis, and relative abundance estimation.
Supplementary Fig. S1 and Supplementary Tables S3 and S4

show the mapping time per read, and the computational
resources required for indexing and mapping, respectively.
We make six key observations. First, RawHash and
UNCALLED are the only tools that can perform real-time ge-
nome analysis for large genomes, as they can provide higher
throughputs than nanopores for all datasets. Sigmap cannot
perform real-time genome analysis for large genomes as it can
provide 0.7x and 0.6 x throughput of a nanopore for human
genome mapping and relative abundance estimations, respec-
tively. RawHash can achieve high throughput as its seeding
mechanism is based on efficiently matching hash values com-
pared to the costly distance calculations that Sigmap performs
for matching seeds, which shows poor scalability for larger
genomes. Second, the throughput of UNCALLED is not af-
fected by the genome size as it provides a near-constant
throughput of around 16x for all applications. This is be-
cause UNCALLED uses FM-index (Ferragina and Manzini
2000) and a branching algorithm that provides robust scaling
with respect to the reference genome size (Kovaka et al.
2021). Third, the throughput of RawHash decreases with
larger genomes as the seeding and chaining steps start taking
up a larger fraction of the entire runtime of RawHash as
shown in Supplementary Table S1. Fourth, RawHash pro-
vides an average throughput 25.8x and 3.4x better than
UNCALLED and Sigmap, while providing an average map-
ping speedup of 32.1x and 2.1x per read, respectively.
Higher throughput with faster mapping times suggests that
the mapping time improvements of RawHash are mainly due
to its computational efficiency rather than the ability to se-
quence shorter prefixes of reads than UNCALLED and
Sigmap. Fifth, for indexing, Sigmap usually requires a larger
amount of computational resources in terms of both runtime
and peak memory usage. Sixth, for mapping, UNCALLED is
the most efficient tool in terms of the peak memory usage as it
requires at most 10GB of peak memory while (i) RawHash
requires <12GB of memory for almost all the datasets and (ii)
Sigmap requires significantly larger memory space than both
tools. RawHash has a larger memory footprint, ~52GB, than
UNCALLED for large genomes. Although such large memory
requirements for larger genomes can lead to challenges in us-
ing RawHash for mobile devices with limited computational
resources, such a requirement can be mitigated by using more
efficient seeding techniques such as minimizers, which we
leave as future work. We conclude that RawHash provides
significant benefits in improving the throughput and perfor-
mance for the real-time analysis of large genomes while
matching the throughput of nanopores.

€202 420100 || uo Jasn younz H13 Aq 0t¥0LZ./262!/L Jusws|ddng/6E/a[01e/Sol1ewIoulold/wod dno olwapede//:sdiy woly pspeojumoq

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad272#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad272#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad272#supplementary-data

i304

[H Nanopore M RawHash I UNCALLED

Throughput (bp/sec)

D4

5 Contamination Relative
Yeast Green Algae Human

Abundance

Figure 6. Throughput of each tool. Values inside the bars show the
throughput ratio between each tool and a nanopore.

3.3 Accuracy

Table 2 shows the accuracy results of tools for each dataset
and application. We make four key observations. First,
RawHash provides the best accuracy in terms of precision, re-
call, and F; values compared to UNCALLED and Sigmap
when mapping reads to large genomes (i.e. the human genome
and the relative abundance estimation). RawHash can effi-
ciently match several events using hash values, which is specif-
ically beneficial in reducing the number of matching regions
in large genomes and increasing the specificity due to finding
longer matches compared to UNCALLED and Sigmap.

Second, RawHash and UNCALLED can accurately per-
form contamination analysis while Sigmap suffers from signif-
icantly lower precision and recall values. Due to the nature of
a contamination analysis, it is essential to correctly eliminate
the genomes other than the contaminating genome (precision)
without missing the correct mappings of reads from the con-
taminating genome (recall). Unfortunately, Sigmap cannot
provide high values in any of these categories, making it sig-
nificantly unsafe for contamination detection.

Third, the precision of RawHash does not drop with the in-
creased length in the reference genome due to the benefits of
finding long matches, which provides a higher confidence in
read mapping.

Fourth, although RawHash does not provide the best accu-
racy when mapping reads to genomes smaller than the human
genome, its accuracy is on par with UNCALLED and Sigmap
for these genomes. UNCALLED and Sigmap can achieve high
recall values as their mechanisms are best optimized for accu-
rately handling matches in relatively smaller genomes with
fewer repeats and ambiguous mappings (Kovaka et al. 2021;
Zhang et al. 2021). We conclude that RawHash is the only
tool that can accurately scale to performing real-time genome
analysis for large genomes, especially with significantly high
precision rates.

Relative abundance estimations: Table 3 shows the relative
abundance estimations that each tool makes and the
Euclidean distance of their estimation to the ground truth esti-
mation. We make two key observations. First, we find that
RawHash provides the most accurate relative abundance esti-
mations in terms of the estimation distance to the ground
truth compared to UNCALLED and Sigmap. This observa-
tion correlates with the accuracy results we show in Table 2
where RawHash provides the best overall accuracy for rela-
tive estimation, which results in generating the most accurate
relative abundance estimations. Second, although Sigmap
cannot perform real-time relative abundance estimation due
to its throughput being lower than a nanopore (Fig. 6),
Sigmap provides accurate estimations that are on par with
RawHash. This observation shows that while Sigmap

Firtina et al.

Table 2. Mapping accuracy.

Dataset UNCALLED Sigmap RawHash
Read mapping
D1 Precision 0.9547 0.9929% 0.9868
SARS-CoV-2 Recall 0.9910 0.5540 0.8735
Fy 0.9725 0.7112 0.9267
D2 Precision 0.9816 0.9842 0.9573
E.coli Recall 0.9647 0.9504 0.9009
Fy 0.9731 0.9670 0.9282
D3 Precision 0.9459 0.9856 0.9862
Yeast Recall 0.9366 0.9123 0.8412
F 0.9412 0.9475 0.9079
D4 Precision 0.8836 0.9741 0.9691
Green algae Recall 0.7778 0.8987 0.7015
Fy 0.8273 0.9349 0.8139
DS Precision 0.4867 0.4287 0.8959
Human HG001 Recall 0.2379 0.2641 0.4054
Fy 0.3196 0.3268 0.5582

Relative abundance estimation
Precision 0.7683 0.7928 0.9484
D1-DS§ Recall 0.1273 0.2739 0.3076
F 0.2184 0.4072 0.4645
Contamination analysis
Precision 0.9378 0.7856 0.8733
D1,D5 Recall 0.9910 0.5540 0.8735
Fy 0.9637 0.6498 0.8734

@ Best results are highlighted with bold text.

provides mappings with more incorrect positions due to lower
precision than RawHash (Table 2), these reads with incorrect
mapping positions are mostly mapped to their correct species.
We conclude that RawHash is the only tool that can accu-
rately be applied to analyze relative abundance estimations
while matching the throughput of nanopores at a large-scale
based on the prior knowledge of the set of reference genomes
to map the reads.

3.4 Sequencing time and cost

Our goal is to estimate the benefits that each tool provides in
reducing the sequencing time and cost. To this end, we mea-
sure the average length of sequenced bases and the average
number of sequenced chunks per read as shown in Table 4.
We make two key observations. First, RawHash provides sig-
nificant benefits in reducing the sequencing time and cost for
large genomes (e.g. Green Algae and Human) compared to
UNCALLED, as RawHash can complete the mapping process
per read by using smaller prefixes of reads. Second, RawHash
uses on average 1.58x more chunks compared to Sigmap
when mapping reads, which can proportionally lead to worse
sequencing time and cost for RawHash compared to Sigmap.
We conclude that although UNCALLED and Sigmap provide
better advantages in reducing sequencing time and cost for
smaller genomes, RawHash can provide significant reductions
in sequencing time and cost for larger genomes compared to
UNCALLED.

3.5 Benefits of Sequence Until

Simulated Sequence Until: Our goal is to estimate the benefits
of implementing the Sequence Until mechanism in
UNCALLED and compare it with RawHash when they both
use Sequence Until under the same conditions. To this end,
we use shuf in Linux to randomly shuffle the mapping files
that both RawHash and UNCALLED generate for relative
abundance and extract a certain portion of the randomly
shuffled file to identify their relative abundance estimations

€202 420100 || uo Jasn younz H13 Aq 0t¥0LZ./262!/L Jusws|ddng/6E/a[01e/Sol1ewIoulold/wod dno olwapede//:sdiy woly pspeojumoq

RawHash i305
Table 3. Relative abundance estimations.

Estimated relative abundance ratios
Tool SARS-CoV-2 E.coli Yeast Green algae Human Distance
Ground Truth 0.0929 0.4365 0.0698 0.1179 0.2828 N/A
UNCALLED 0.0026 0.5884 0.0615 0.1313 0.2161 0.1895
Sigmap 0.0419 0.4191 0.1038 0.0962 0.3390 0.0877
RawHash 0.1249 0.4701 0.0957 0.0629 0.2464 0.0847%

Best results are highlighted with bold text.

Table 4. The average sequenced length of bases and the number of
chunks.

Tool SARS-CoV-2 E.coli Yeast Greenalgae Human

Average sequenced base length per read

UNCALLED 184.51% 580.52 1233.20 5300.15 6060.23
RawHash 513.95 1376.14 2565.09 4760.59 4773.58
Average sequenced number of chunks per read

Sigmap 1.01 211 414 576 10.40
RawHash 1.24 3.20 5.83 10.72 10.70

@ Best results are highlighted with bold text.

after 0.01%, 0.1%, 1%, 10%, and 25% of the overall reads in
the sample are randomly sequenced from nanopores.

Table 5§ shows the distance of relative abundance estima-
tions after a certain portion of the read is randomly sequenced
from nanopores. We make two key observations. First, both
RawHash and UNCALLED can significantly benefit from
Sequence Until by stopping sequencing after processing a
smaller portion of the entire sample since their estimations us-
ing smaller portions are close to those using the entire set of
reads (Table 3) in terms of their distance to the ground truth.
This suggests that many other tools can benefit from
Sequence Until as their sensitivity to relative abundance esti-
mations may not significantly change while providing oppor-
tunities for reducing the sequencing time and cost up to a
certain threshold based on the tool.

Second, RawHash can provide more accurate relative
abundance estimations when using only 0.1% of the reads
than the estimation that UNCALLED provides using the en-
tire set of reads (Table 3). We conclude that Sequence Until
provides significant opportunities in reducing sequencing time
and cost while more accurate tools such as RawHash can ben-
efit further from Sequence Until by using fewer portions of
the entire read set than the portions that less accurate tools
would need to achieve similar accuracy.

Sequence Until with RawHash: Our goal is to evaluate
Sequence Until when used in real-time with RawHash for rel-
ative abundance estimation. Table 6 shows the relative abun-
dance estimations that RawHash makes with and without
Sequence Until. We note that the estimations we show for
RawHash in Table 6 are different than the estimations in
Table 3 since we randomly subsample the reads in the relative
abundance estimation dataset, as explained in Section 3.1.
We make two key observations. First, we observe that the dis-
tance between the relative abundance estimations between
these two configurations of RawHash is substantially low.
This indicates that our outlier detection mechanism can accu-
rately detect the convergence to the relative abundance esti-
mations without using a full set of reads. Second, Sequence
Until enables accurately stopping the entire sequencing after

processing 7% of the reads in the entire set without substan-
tially sacrificing accuracy. We conclude that Sequence Until
has the potential to significantly reduce the sequencing time
and cost by using only fewer reads from a sample while pro-
ducing accurate results.

4 Discussion

We discuss the benefits we expect RawHash can immediately
make, the limitations of RawHash, and future work. We envi-
sion that RawHash can be useful mainly for two directions.
First, RawHash provides a low-cost solution for analyzing
large genomes in real-time. Such an analysis can be signifi-
cantly useful when using nanopore sequencers with limited
computational resources to enable portable real-time genome
analysis at a large scale.

Second, we expect that RawHash can also be useful for ge-
nome analysis that does not require real-time solutions by re-
ducing the time and energy that further steps in genome
analysis may require. One of the immediate steps after gener-
ating raw nanopore signals is their translation to their corre-
sponding DNA bases as sequences of characters with a
computationally intensive step, basecalling. Basecalling
approaches are usually computationally costly and consume
significant energy as they use complex deep learning models
(Mao et al. 2022; Singh et al. 2022). Although we do not eval-
uate in this work, we expect that RawHash can be used as a
low-cost filter (Cavlak et al. 2022) to eliminate the reads that
are unlikely to be useful in downstream analysis, which can
reduce the overall workload of basecallers and downstream
analysis.

Future work: We find three key directions for future work.
First, we find that our efficient hash-based similarity identifi-
cation mechanism can be used to efficiently find overlaps be-
tween signals as the reads are sequenced in real-time.
Although we observe that our indexing technique is efficient
in terms of the amount it requires to construct an index even
for large genomes, such an overlapping technique requires
substantially more optimized indexing methods and techni-
ques that can efficiently find overlaps as more reads are se-
quenced and evolves the index. Finding overlaps between
signals can be beneficial in (i) providing enriched information
to basecallers to increase their accuracy and (ii) identifying re-
dundant signals that fully overlap with already sequenced
reads in an effort for generating assemblies from signals.

Second, since RawHash generates hash values for matching
similar regions, it provides opportunities to use the hash-based
seeding techniques that are optimized for identifying sequence
similarities accurately without requiring large memory space,
such as minimizers (Roberts et al. 2004; Li 2018), spaced seeds
(Ma et al. 2002), syncmers (Edgar 2021), strobemers (Sahlin
2021), and fuzzy seed matching as in BLEND (Firtina et al.

€202 420100 || uo Jasn younz H13 Aq 0t¥0LZ./262!/L Jusws|ddng/6E/a[01e/Sol1ewIoulold/wod dno olwapede//:sdiy woly pspeojumoq

i306

Table 5. Relative abundance with simulated Sequence Until.

Firtina et al.

Estimated relative abundance ratios

Tool SARS-CoV-2 E.coli Yeast Green algae Human Distance
Ground Truth 0.0929 0.4365 0.0698 0.1179 0.2828 N/A
UNCALLED (25%)* 0.0026 0.5890 0.0613 0.1332 0.2139 0.1910
RawHash (25%) 0.0271 0.4853 0.0920 0.0786 0.3170 0.0995°
UNCALLED (10%) 0.0026 0.5906 0.0611 0.1316 0.2141 0.1920
RawHash (10%) 0.0273 0.4869 0.0963 0.0772 0.3124 0.1004
UNCALLED (1%) 0.0026 0.5750 0.0616 0.1506 0.2103 0.1836
RawHash (1%) 0.0259 0.4783 0.0987 0.0882 0.3088 0.0928
UNCALLED (0.1%) 0.0040 0.4565 0.0380 0.1910 0.3105 0.1242
RawHash (0.1%) 0.0212 0.5045 0.1120 0.0810 0.2814 0.1136
UNCALLED (0.01%) 0.0000 0.5551 0.0000 0.0000 0.4449 0.2602
RawHash (0.01%) 0.0906 0.6122 0.0000 0.0000 0.2972 0.2232

? Percentages show the portion of the overall reads used.

b Best results are highlighted with bold text.
Table 6. Relative abundance with Sequence Until.

Estimated relative abundance ratios in 50 000 random reads

Tool SARS-CoV-2 E.coli Yeast Green algae Human Distance
RawHash (100%)* 0.0270 0.3636 0.3062 0.1951 0.1081 N/A
RawHash + 0.0283 0.3539 0.3100 0.1946 0.1133 0.0118

Sequence Until (7%)

? Percentages show the portion of the overall reads used.

2023). Although we do not evaluate in this work, we implement
the minimizer seeding technique in RawHash. Our initial obser-
vation motivates us that future work can exploit these seeding
techniques with slight modifications in their seeding mechanisms
to significantly improve the performance of certain applications
without reducing the accuracy.

Third, we find that RawHash can also benefit from a GPU
implementation as its low-cost and accurate implementation
can effectively be scaled to nanopore sequencers that include
thousands of nanopores such that these pores can be analyzed
in parallel with an efficient GPU implementation, which we
leave as future work.

5 Conclusion

We propose RawHash, a novel mechanism that provides a
low-cost and accurate approach for real-time genome analysis
for large genomes. RawHash can efficiently and accurately
perform real-time analysis of raw nanopore signals to identify
similarities between the signals and a reference genome in
real-time at a large-scale (e.g. whole-genome analysis for hu-
man or communities with multiple samples). To efficiently
and accurately identify similarities, RawHash (i) generates
events from both raw signals and the reference genome, (ii)
quantizes the events into values such that slightly different
events that correspond to the same DNA content can have the
same value, and (iii) generates hash values from multiple
events to efficiently find matching regions between raw sig-
nals and a reference genome using hash values with efficient
data structures such as hash tables. We compare RawHash
with the state-of-the-art approaches, UNCALLED and
Sigmap, on three important applications in terms of their per-
formance, accuracy, and estimated benefits in reducing se-
quencing time and cost. Our results show that (i) RawHash is

the only tool that can be accurately applied to analyze raw
nanopore signals at large-scale, (ii) provides 25.8x and 3.4 x
better average throughput, and (iii) can map reads 32.1x and
2.1x faster than UNCALLED and Sigmap, respectively.

Acknowledgements

We thank the SAFARI Research Group members for their
valuable feedback and the stimulating intellectual and schol-
arly environment they provide. We thank the anonymous
reviewers of ISMB/ECCB 2023.

Supplementary data

Supplementary data are available at Bioinformatics online.

Conflict of interest

None declared.

Funding

We acknowledge the generous gifts of our industrial partners,
including Intel and VMware. This work is also partially sup-
ported by the European Union’s Horizon programme for re-
search and innovation [101047160 - BioPIM] and the Swiss
National Science Foundation (SNSF) [200021_213084].

Data availability

We provide the accession numbers of all the available public
datasets we use in Table 1. We provide the scripts to
download all the datasets and to fully reproduce our results
at https://github.com/CMU-SAFARI/RawHash/tree/main/test.

€202 420100 || uo Jasn younz H13 Aq 0t¥0LZ./262!/L Jusws|ddng/6E/a[01e/Sol1ewIoulold/wod dno olwapede//:sdiy woly pspeojumoq

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad272#supplementary-data
https://github.com/CMU-SAFARI/RawHash/tree/main/test

RawHash

The source code of RawHash is available at https://github.
com/CMU-SAFARI/RawHash.

References

Bao Y, Wadden J, Erb-Downward JR et al. SquiggleNet: real-time, di-
rect classification of nanopore signals. Genome Biol 2021;22:298.
Cavlak MB, Singh G, Alser M et al. Targetcall: eliminating the wasted
computation in basecalling via pre-basecalling filtering. bioRxiv,

2022, preprint: not peer reviewed.

David M, Dursi L], Yao D et al. Nanocall: an open source basecaller for
oxford nanopore sequencing data. Bioinformatics 2017;33:49-55.

Dunn T, Sadasivan H, Wadden J ef al. SquiggleFilter: an accelerator for
portable virus detection. In: MICRO, New York, NY, USA. 2021.

Edgar R. Syncmers are more sensitive than minimizers for selecting con-
served k-mers in biological sequences. Peer] 2021;9:e10805.

Edwards HS, Krishnakumar R, Sinha A et al. Real-time selective se-
quencing with RUBRIC: read until with basecall and reference-
informed criteria. Sci Rep 2019;9:11475.

Ferragina P, Manzini G. Opportunistic data structures with applica-
tions. In: Proceedings 41st Annual Symposium on Foundations of
Computer Science, Redondo Beach, CA, USA. 2000, 390-98.

Firtina C, Park J, Alser M et al. BLEND: a fast, memory-efficient and ac-
curate mechanism to find fuzzy seed matches in genome analysis.
NAR Genom Bioinform 2023;5:1qad004.

Kovaka S, Fan Y, Ni B et al. Targeted nanopore sequencing by real-time
mapping of raw electrical signal with UNCALLED. Nat Biotechnol
2021;39:431-41.

Li H. Minimap2: pairwise alignment for nucleotide sequences.
Bioinformatics 2018;34:3094-100.

Loose M, Malla S, Stout M. Real-time selective sequencing using nano-
pore technology. Nat Methods 2016;13:751-4.

Ma B, Tromp J, Li M. PatternHunter: faster and more sensitive homol-
ogy search. Bioinformatics 2002;18:440-5.

Mao H, Alser M, Sadrosadati M et al. Genpip: in-memory acceleration
of genome analysis via tight integration of basecalling and read

i307

mapping. In: 2022 55th IEEE/ACM International Symposium on
Microarchitecture (MICRO), Chicago, IL, USA. IEEE, 2022,
710-26.

Payne A, Holmes N, Clarke T et al. Readfish enables targeted nanopore
sequencing of gigabase-sized genomes. Nat Biotechnol 2021;39:
442-50.

Roberts M, Hayes W, Hunt BR et al. Reducing storage requirements for
biological sequence comparison. Bioinformatics 2004;20:3363-9.
Ruxton GD. The unequal variance t-test is an underused alternative to
student’s t-test and the Mann—Whitney U test. Behav Ecol 2006;17:

688-90.

Sadasivan H, Wadden J, Goliya K et al. Rapid Real-time Squiggle
Classification for Read until using RawMap. In: Archives of Clinical
and Biomedical Research, 2023;7:45-57. https://doi.org/10.26502/
acbr.50170318

Sahlin K. Effective sequence similarity detection with strobemers.
Genome Res 2021;31:2080-94.

Senanayake A, Gamaarachchi H, Herath D et al. DeepSelectNet: deep
neural network based selective sequencing for oxford nanopore se-
quencing. BMC Bioinformatics 2023;24:31.

Shih PJ, Saadat H, Parameswaran S et al. Efficient real-time selective ge-
nome sequencing on resource-constrained devices. arXiv, 2022, pre-
print: not peer reviewed.

Simpson JT, Workman RE, Zuzarte PC ez al. Detecting DNA cytosine meth-
ylation using nanopore sequencing. Nat Methods 2017;14:407-10.

Singh G, Alser M, Khodamoradi A et al. A framework for designing effi-
cient deep learning-based genomic basecallers. bioRxiv, 2022, pre-
print: not peer reviewed.

Ulrich JU, Lutfi A, Rutzen K et al. ReadBouncer: precise and scalable
adaptive sampling for nanopore sequencing. Bioinformatics 2022;
38:1153-60.

Weilguny L, De Maio N, Munro R et al. Dynamic, adaptive sampling
during nanopore sequencing using Bayesian experimental design.
Nat Biotechnol 2023:1-8.

Zhang H, Li H, Jain C ez al. Real-time mapping of nanopore raw signals.
Bioinformatics 2021;37:1477-83.

€202 420100 || uo Jasn younz H13 Aq 0t¥0LZ./262!/L Jusws|ddng/6E/a[01e/Sol1ewIoulold/wod dno olwapede//:sdiy woly pspeojumoq

https://github.com/CMU-SAFARI/RawHash
https://github.com/CMU-SAFARI/RawHash
https://doi.org/10.26502/acbr.50170318
https://doi.org/10.26502/acbr.50170318

	tblfn1
	tblfn2
	tblfn3
	tblfn4
	tblfn5
	tblfn8
	tblfn6
	tblfn7

