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Abstract—Scratchpad Memory (SPM) has been widely adopted
in various computing systems to improve performance of data
access. Recently, non-volatile memory technologies (NVMs) have
been employed for SPM design to improve its capacity and
reduce its energy consumption. In this paper, we explore data
allocation in SPM based on racetrack memory (RM), which is an
emerging NVM with ultra-high storage density and fast access
speed. Since a shift operation is needed to access data in RM,
data allocation has an impact on performance of RM based SPM.
Several allocation methods have been discussed and compared
in this work. Especially, we addressed how to leverage genetic
algorithm to achieve near-optimal data allocation.

I. INTRODUCTION

Scratchpad Memory (SPM) refers to the high speed on-chip

memory that is used to store a small portion of frequently

accessed data. Compared to on-chip cache memory, SPM

does not have the tag array and relevant comparison logic

for complicated indexing. Thus, it is more energy- and area-

efficient than caches [1]. In addition, since it is managed by

software, it can provide better timing predictability in real-time

systems [2]. Thus, SPM has been widely employed in various

computing systems, which include embedded CPU, MPSoC,

GPUs, etc [3], [4], [5].

With the rapid development of these computing systems, the

requirement for large SPM capacity keeps increasing. Thus,

how to increase capacity of SPM while still keeping its fast

access speed has become a challenging problem. Moreover,

traditional SRAM-based on-chip memory has the limitation of

high leakage power, which also impedes the increase of SPM

capacity. To overcome these problems of traditional memory,

various non-volatile memory technologies (NVMs) have been

proposed extensively researched. Among these NVMs, STT-

RAM has been considered to as a competitive replacement of

SRAM for SPM design.

Several researchers work on NVM based SPMs. Wang et

al.[6] explored and evaluated SPM architectures consisting

of STT-RAM. They found that STT-RAM is an effective

alternative to SRAM for SPM in low-power embedded systems

with their optimized design. Hu et al.[7] discussed dynamic
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data allocation algorithm of NVM/SRAM hybrid SPM. Em-

ployed NVM, their algorithms reduce the memory access time,

dynamic energy and leakage power.

Recently, a new NVM called racetrack memory (RM, a.k.a

domain wall memory) is also proposed for SPM design [8].

Compared to STT-RAM, RM can provide several times higher

storage density, comparable read speed, and even faster write

speed [9]. Thus, using RM based SPM can achieve even higher

storage capacity and performance. Previous work has also

pointed out that the unique shift operations may dominate the

latency of data access to RM [8], [10], [9]. Since the total

shift latency depends on data allocation in SPM, which can

also be controlled by software, optimizing data allocation in

RM based SPM has become an interesting research topic.

Previous work has proved that data allocation in RM based

SPM is a NP complete problem [8]. Thus, it has proposed

a heuristic solution to solve the problem. In this work, we

also investigate different heuristic methods to explore data

allocation in RM based SPM.

We first propose three simple methods in Section III, which

are demonstrated to be in-efficient in evaluation. Then, we

further study how to map this problem to the genetic algorithm

in Section IV. Experimental results in Section V show that the

genetic algorithm can achieve close performance to the optimal

solution, which is generated by exhausted search.

II. BACKGROUND ABOUT GENETIC ALGORITHM

A. RM Basics

As shown in Figure 1, a racetrack memory cell consists

of a tape-like stripe and several access transistors. The stripe

is made of magnetic material, which is the key component

to store data. It is partitioned into a lot of domains isolated

by domain walls. The magnetization direction of a domain is

programmed to store either bit 1 or bit 0.

Several transistors are connected to the stripe to perform

read, write, and shift operations, respectively. These transistors

are called access ports and shift ports. Similar to STT-RAM,

the data stored in each domain can be read out or updated

according to its magnetization direction. Together with the

domain aligned under the access port, the reference domain

forms a sandwich structure magnetic tunneling junction (MTJ).

Thus, RM is also considered as a generation of spintronic-

technology based memory.978-1-4673-6688-5/15/$31.00 c©2015 IEEE



Fig. 1. The cell structure of racetrack memory.

Since the read port can only read the bit in a domain

aligned under it, a shift operation is needed before reading

other domains. Shift operations are performed with the help

of two transistors in shift ports, which are attached to both

ends of the racetrack memory stripe. To move those domain

walls, the driving current density is set to be higher than a

threshold.

Thanks to the tape-like structure, the racetrack memory can

achieve ultra-high density. At the same time, it can provide

fast access speed similar to STT-RAM. Thus, RM has attracted

more and more attention of researchers [11], [12], [13], [14].

B. GA Basics

Genetic algorithm (GA) simulates biological evolution pro-

cess, where the fit survive and the not fit die. The process

is accomplished by selection, recombination and mutation of

chromosomes [15], [16], [17].

Each chromosome is associated with a fitness function. GA

uses optimal objective function to represent the fitness. Selec-

tion operation is used to select a gene from parents in a certain

probability, based on its fitness degree. Crossover operation

exchanges gene segments from two chromosomes to form

two new ones. Mutation operation evolves a chromosomes

into a new one in a certain probability. Thus, the creation of

new chromosomes means more high fitness children. Evolving

generation by generation, the chromosomes with highest level

of fitness can survive, while the others die.

The basic steps of the GA is shown as follow:

• All parameters are initialized with randomly generated

chromosomes;

• Calculate the fitness of every chromosome;

• Certain amount of chromosomes having certain fitness

value were selected in a certain probability;

• Crossover chromosomes in a certain probability;

• Mutation operation;

• Finish if the generation number reaches the limitations;

else return two step 2.

III. SIMPLE DATA ALLOCATION ALGORITHMS FOR

RACETRACK MEMORY

Since the memory access shows a lot of pattern, several

simple algorithms can benefit from simple assumption about

the data access pattern. In this section, we propose three simple

algorithms (FCFS, MAIM, and MAF) to improve the data

allocation in racetrack memory.

A. FCFS: First Come First Store Algorithm

Similar to the schedule algorithm First come first service,

we implement similar algorithm First Come First Store (FCFS)

to allocation the data on racetrack memory. FCFS stores the

variant into racetrack memory once new data come.

For example, if the memory access trace is (A,B,C, A,B,C,

D,E,F, D,E,F, D,E,F), the finally variant sequence stored in

racetrack memory will be (A,B,C,D,E,F). The access head of

racetrack memory focuses on the first half before facing the

variant E. In this case, the algorithm perform well.

However, this algorithm faces a problem when the access

pattern has loops. For example, if the memory access trace

is (A,B,C, A,B,C, D,E,A, D,E,A, D,E,A), the finally variant

sequence stored in racetrack memory will be (A,B,C,D,E).

When accessing A and E, the access head must move back and

forth over BCD, which degrades the performance of FCFS.

B. MAIM: Most Access In Middle Algorithm

A simple idea to reduce the shift number is to put the

frequent accessed data close to the access head. Based on this

idea, we propose Most Access In Middle (MAIM) algorithm.

MAIM puts the data from the very middle of racetrack

memory to both ends, from the most frequent accessed data

to the least frequent ones.

For example, the access trace is (A,B,B, D,C,D, C,E,C,

A,B,A, B,A,A). We count the frequency of every variant. A,

B, C, D, and E are 5, 4, 3, 2, and 1 times. Thus, based on

MAIM, the data allocation will be (D,B,A,C,E). And the initial

position for access head stops at A.

C. MAF: Most Access First Algorithm

After observation about the MAIM, we found several fre-

quent access data are loop iteration index. When a loop

finishes, the index will never been used but still occupies the

middle position. Thus, the following accesses to its neighbors

need to go over it back and forth.

In order to solve this problem, we modify the MAIM a little

bit, by allocating the data from one end to the other according

to the frequency. For example, if the memory access trace is

(F,A,F, B,F,C, F,D,F, A,B,C,D), we put the data in racetrack

memory as (F,B,C,D,A).

IV. GENETIC ALGORITHM FOR RACETRACK MEMORY

As you can see in previous section, each simple algorithm

prefers different data pattern. When the pattern changes, the

simple algorithms may lose power to handle the problem.

Thus, we need a heuristic algorithm to help solve this NP-

complete problem.

In this section, we discuss how to port Genetic Algorithm

(GA) into the data placement problem of racetrack memory

based scratchpad memory.

A. Encoding and Decoding

In order to exploit GA to solve the racetrack memory

scratchpad memory data allocation problem, we need to en-

code different positions of data into different genes.



Fig. 2. The GA implementation of racetrack memory data allocation problem.

The variants in the program are noted as a set,

{a1, a2, ..., an}, where ai is a variant. The arrangement of

the variants in a racetrack stripe is a permutation, −→p =
(a1, a2, ..., an). In order to represent the variants by gene,

the permutation of variants is represented by a permutation of

number (gene),
−→
k = (k1, k2, ..., kn), where ki is a number

between 1 and n. The mapping process from −→p to
−→
k is

encode(), while its opposite operation is decode().

The encode() starts with a baseline variant permutation. The

baseline permutation can be in any sequence, noted as −→p0. The

number permutation is get by noting the remaining position of

the variant of incoming −→p . For each variant, it has two steps:

• ki equals to the position number in −→p0 of ai from −→p ;

• Delete the ai from −→p0.

The i should increase from 1 to n to complete the encode

process.

For example, a data set {A,B,C,D} can be initially

mapped into racetrack by a permutation p0 = (A,B,C,D).
If we take this permutation as baseline, its gene is

−→
k =

(1, 1, 1, 1). For another permutation −→p = (D,C,B,A), its

gene will be
−→
k = (4, 3, 2, 1).

The decode() process is used to get variant permutation by

its gene, with same baseline variants permutation as encode().

The decode also has two steps:

• ai equals to the ki-th element of −→p0;

• Delete the ki-th element from −→p0.

The i should increase from 1 to n to complete the decode

process.

B. Genetic Algorithm Engine

After encoding different data allocation methods into genes,

we can use the GA engine to produce new allocations by

inputing naive mappings. The basic idea is shown in Figure 2.

The detailed computation procedure is shown as follows.

• Step 1: Initiate the group. Pick M random genes as a

group,
−→
k1, ...,

−→
kM .

• Step 2: Decode the genes. The group is decodes to

variant permutations.

• Step 3: Analyze the group. Calculate the shift operation

cost, and save it in an array, cost[M]. And label the best

as bestGene.

• Step 4: Calculate the fitness of each gene. The equation

is as follow.

fitness[i] = m(n− 1)− cost[i] (1)

• Step 5: Select. Among the M candidates, the probability

to select it is a function of cost, shown as follows.

GA select M genes based on random number from the

candidates into temporary group.

probability[i] =
cost[i]

M∑

i=1

cost[i]

(2)

• Step 6: Crossover. Combine M genes from temporary

group into M/2 pairs. Do crossover operation in each

pair. The crossover point is randomly selected in the

permutation.

• Step 7: Mutation. Do mutation operation on each gene

in temporary group. A random selected element in each

gene will be changed randomly.

• Step 8: Test and end. If the iteration is enough, stop the

evolution and output the best case. If not, go back to step

3.

C. Improved Genetic Algorithm

Fig. 3. An example of the improved crosspoint selection process.

Due to the randomness of the GA, it’s possible the solution

is not optimal or sub-optimal. In order to help the GA get

better solution, we need to optimize the GA according to the

attributes of the racetrack memory.
Input: Take the results of existing simple mapping algo-

rithms as several inputs of the GA engine. Because differ-

ent simple algorithms have different preference of program.

Without the knowledge of program pattern, it’s hard to select

proper algorithm. Taking them as input helps the GA get more

valuable gene segments.
Thus, compared to GA, the IGA changes the step 1 as

follows:

• Step 1: Initiate the group. Pick the three results of

FCFS, MAIM and MAF. Use them as three genes in the

first generation with M genes. Pick M-3 random genes.

Cross Operation: When selecting a point as the cross

point, we can profile the new gene segments to avoid in-

efficient cross operation. If the four segments cut from this
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Fig. 4. The optimized crosspoint selection process.

point are different to each other, we accept this cross point,

otherwise refuse it. If the the segments at one side of the cross

point are same, move the cross point to the opposite direction.

An example is shown in Figure 3 to illustrate this process.

Once the initial crosspoint appears at position 1, the engine

finds the right parts of the two chromosomes are same. Thus

it moves the point leftward twice to get the final crossover

point.

Compare to the standard GA, the IGA also modifies the

step 6 as follows:

• Step 6: Crossover. Divide M genes from temporary

group into M/2 pairs. Do crossover operation in each

pair. Choose the crossover point follow the rules shown

in Figure 4.

V. EXPERIMENT AND EVALUATION

We take a 1MB racetrack memory (RM) as scratchpad

memory (SPM). Each RM cell contains 32 domains to store

valid bits, attached with one access port. The write operation is

accomplished by shift based write to reduce the write latency.

The detailed circuit design follows previous work [9]. We

conduct experiments on MiBench [18] benchmark suite, via

house-made simulator to collect the number of shift operations.

The performance is evaluated by normalized number of shift

operations.

The IGA improves the GA by increasing the convergence

speed. The comparison between GA and IGA is shown in

Figure 5. The x-axis represents the generation of the evo-

lution; while the y-axis represents the best result got from

this generation, average from 10 experiments. The result is

expressed by number of shift operations. Lower number means

smaller shift cost. As we can see from the Figure 5, IGA

can converge faster compared with GA. And the IGA can

reach smaller shift operation number (1.30M), compared to

GA (1.36M). The reason why IGA is better is two folds. First,

IGA take the results of FCFS, MAIM, MAF as input genes,

which means it has better genes seeds compared with GA.

Second, the crossover operation in IGA is more efficient to

produce new genes.

Fig. 5. The comparison of convergence speed between GA and IGA.

The performance of FCFS, MAIM, MAF, GA and IGA

is shown in Figure 6. Exhaustive search (ES) can find the

minimal number of shift operations that can be achieved.

Thus, we take ES as baseline to normalize other methods by

the number of shift operations. Based on the experiment on

Mibench, simple algorithms show different benefit on different

applications. On average, FCFS, MAIM, and MAF need 80%,

100%, and 105% more shift operations for memory access.

Compared to them, GA algorithms achieve better performance,

and IGA also performs better than GA. Overall, the Improve

Genetic Algorithm(IGA) achieves almost the same perfor-

mance as Exhaustive Search (ES).

Due to the randomness of GA, the solution may not be

consistent between two executions. We evaluate the variance

of these algorithms, shown in TABLE I. We can find out that

the normalized variance of IGA is smaller than that of GA,

sometimes they are equal, which means that IGA has better

stability than GA.



Fig. 6. The comparison of performance between FCFS, MAIM, MAF, GA and IGA.

TABLE I
THE NORMALIZED VARIANCE OF GA AND IGA.

Benchmark GA IGA

qsort 0.020 0.010

dijkstra 0.153 0.047

sha 0.000 0.000

FFT 0.184 0.000

basicmathlarge 0.000 0.000

basicmathsmall 0.056 0.014

susan 0.143 0.000

patricia 0.046 0.046

stringsearch 0.022 0.007

CRC32 0.000 0.000

Total 0.049 0.038

VI. CONCLUSIONS

Racetrack memory based SPM has advantages of high ca-

pacity and fast access speed. A major problem is to reduce tim-

ing overhead caused by shift operations. Since shift operations

depend on data allocation in SPM, different hueristic schemes

are investigated and compared to the optimal solution in this

work. Experimental results show that the genetic algorithm

can achieve a near-optimal solution with proper configuration

exploration.
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