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ABSTRACT
Data encryption and authentication are essential for secure NVM.
However, the introduced security metadata needs to be atomically
written back to NVM along with data, so as to provide crash consis-
tency, which unfortunately incurs high overhead. To support �ne-
grained data protection without compromising the performance,
we propose cc-NVM. It �rstly proposes an epoch-based mecha-
nism to aggressively cache the security metadata in CPU cache
while retaining the consistency of them in NVM. Deferred spread-
ing is also introduced to reduce the calculating overhead for data
authentication. Leveraging the hidden ability of data HMACs, we
can always recover the consistent but old security metadata to its
newest version. Compared to Osiris, a state-of-the-art secure NVM,
cc-NVM improves performance by 20.4% on average. When the
system crashes, instead of dropping all the data due to malicious
attacks, cc-NVM is able to detect and locate the exact tampered
data while only incurring extra write tra�c by 29.6% on average.

1 INTRODUCTION
The emerging byte-addressable non-volatile memory (NVM) tech-
nologies, such as PCM, STT-RAM, ReRAM and Intel 3D XPoint,
have the advantage of high density, low-power and high scalability,
making them a promising alternative to DRAM as the main memory.
Further, these new memory technologies bring data durability to
the in-memory system, which blurs the di�erence between storage
and memory, making it possible to store and manipulate persistent
data in-place in memory [1, 5, 7, 8].

Since NVMs are directly attached to memory bus (a.k.a., persis-
tent memory, PM), they are vulnerable to malicious attacks similar
to that DRAM system may su�er from. There are mainly two types
of attack models: ¨ data con�dentiality attack (i.e., stealing the pri-
vacy data), and ≠ data integrity attack (e.g., data spoo�ng, splicing,
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and replaying). In response to the above two attack models, exist-
ing secure memory system introduces counter mode encryption
(CME) [11, 17, 19, 22, 24, 25] and Merkle Tree (MT) authentica-
tion [3, 18, 19, 23] to respectively ensure data con�dentiality and
integrity. In CME, each time a data block is evicted out of the CPU
cache, it is encrypted with a unique counter and the counter then
increases by one. Bonsai MT (BMT) is the state-of-the-art MT au-
thentication architecture. To prevent spoo�ng and splicing attacks,
BMT places a single layer of hash message authentication codes
(data HMACs) alongside the data. It also builds a hierarchical tree
structure of counter HMACs over counters to detect replay attacks.

To improve performance, traditional DRAM-based secure mem-
ory systems store these frequently accessed security-support meta-
data (aforementioned counters, HMACs) in dedicated cache space [4,
6, 17] or directly store them in the last-level cache [3, 19]. However,
metadata caching is non-trivial for secure NVMs. The cached data
in CPU cache may lose after a system/power failure, thus leading to
the corrupted state when the data reaches NVM while the relevant
metadata doesn’t. Consequently, data decryption and authentica-
tion may fail when the system is rebooted. As a result, how to
achieve crash consistency [14, 15] becomes the building block for
secure NVM systems. Speci�cally, it’s important to guarantee   the
consistency between data and secure metadata and À the internal
consistency of the Merkle Tree simultaneously. However, imple-
menting such a crash consistency mechanism is expensive. We
have implemented a naive approach, which aggressively evicts the
cached secure metadata. It can signi�cantly deteriorate the system
performance by 41.4% and increase memory write tra�c by 5.5⇥, in
comparison to the NVM-based secure system without consistency
guarantee. The root cause of such ine�ciency lies in two aspects:
(1) Write ampli�cation. Each time a data block is evicted, all the
related encryption counters and the tree nodes in the Merkle Tree
need to be �ushed to NVM as well. (2) Cascading calculating on the
Merkle Tree. Once a counter is incremented, all its ancestors till the
root node in Merkle Tree need be recalculated.

In this paper, we propose a secure NVM system named cc-NVM.
It is capable of detecting and locating the attacks in NVM both at
runtime and after system crashes, while introducing minimal crash
consistency overhead. By exploring the hidden ability of data HMAC,
we are enabled to lazily �ush encryption counters to NVMs. In the
absence of spoo�ng/splicing attacks, any stalled counters after a
system failure can be safely recovered. Based on this principle, we
then propose epoch-based consistent Merkle Tree. It aggressively
caches the tree nodes in CPU cache and atomically synchronizes
the updates to NVM. As a result, the Merkle Tree in NVM is con-
sistently transited from an old state to new state. Leveraging the
consistency property of the Merkle Tree in NVM, the ability to



thwart replay attacks still holds. To reduce the HMAC calculating
overhead, similar to existing DRAM-based secure system, cc-NVM
calculates the new tree nodes from the bottom up, and stops if it has
already been cached. Instead, the root node is lazily updated only
at synchronization. Our evaluations show that cc-NVM improves
IPC by 20.4% and only incurs extra write tra�c by 29.6% when
compared to Osiris [9], but with the ability to detect/locate attacks
after crashes.

Optimizations on secure NVMs have been studied recently [9,
10, 12, 17]. Comparatively, cc-NVM is novel in the following ways:
• Since the Merkle Tree in NVM is guaranteed to be always con-
sistent, we can not only detect attacks but also locate the exact
tampered data block even after a system failure.

• With an epoch mechanism, cc-NVM fully exploits the bene�ts of
metadata caching with minimal crash consistency overhead.

2 BACKGROUND AND MOTIVATION
2.1 Threat model
Our thread model identi�es two regions of a system just as in prior
studies on hardware-based memory encryption and authentication.
The secure region named trusted computing base (TCB) consists
of the processor chip and core parts of the operating system (e.g.,
security kernels). Any on-chip code or data (i.e. in registers or
caches) is considered safe and cannot be observed or manipulated
by attackers. The non-secure region includes all o�-chip resources,
primarily including the o�-chipmemory and the processor-memory
bus [13, 19, 21]. The attacker can obtain secret values stored in
memory or transferred through o�-chip interconnects when the
program is running, or directly steals the NVM DIMM (i.e., data
con�dentiality attacks). The adversary can also act as a man-in-the-
middle to modify values in the physical memory and on all o�-chip
interconnects. This is called data integrity attacks, which include
tampering the value directly (spoo�ng), exchanging the content of
one address with another’s from a di�erent location (splicing), and
replaying an old value at the same location (replay).

2.2 Encryption and authentication in NVMs
Memory encryption and authentication techniques are widely used
to detect con�dentiality attacks and integrity attacks.

Memory encryption is to ensure that the adversary cannot
obtain any meaningful data stored outside the TCB. Therefore, any
data evicted out of the CPU cache should be encrypted before being
stored in memory. Counter mode encryption (CME) is the most
frequently used approach to encrypt memory data. CME encrypts a
data block by XORing it with a one-time pad (OTP) [21]. Speci�cally,
OTP is generated with a secret key and a seed as inputs (the seed
consists of the address of the data block and an associated counter).
Conversely, when a data block is fetched from memory, the same
seed is encrypted to generate the same OTP, and then we use it to
decrypt the data block. CME is ensured to be secure by guaranteeing
the uniqueness of each seed: (1) di�erent data blocks are mapped
to di�erent counters; (2) the counter is increased by 1 for each data
write-back (encryption).

Memory authentication is devoted to guaranteeing the in-
tegrity of in-memory data. The state-of-the-art memory authentica-
tion architecture is the Bonsai Merkle Tree (BMT) [18, 19] (shown
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Figure 1: Data Layout of Bonsai Merkle Tree

in Figure 1), which is deployed on the CME architecture. It �rst uses
a single layer of message authentication codes (a.k.a, data HMACs)
to detect spoo�ng and splicing attacks, where each HMAC is a
hashed value generated by taking the encrypted data block, counter
and its address as inputs. It then builds the Merkle Tree (MT), a hier-
archical tree structure, to prevent replay attacks. Each leaf node of
the Merkle Tree is a memory line of counters, and the parent nodes
(a.k.a, counter HMACs) store the HMACs of its children computed
using a keyed hashing function (e.g., HMAC based on SHA-1). The
secret HMAC key and the root of MT are stored in secure on-chip
registers to prevent the MT from being replayed from bottom up.
BMT is di�erent from the traditional approaches which build MT
over both counters and data [3]. In BMT, the encrypted data blocks
are not directly protected. However, it is immune to replay attacks
since the data HMACs include the MT-protected counters as in-
put. Therefore, BMT has lower metadata storage overhead, thus
shortening the tree depth and reducing the MT read/write times.

Caching security metadata can boost performance for both
CME and BMT. Take a memory read and decryption for example,
if the corresponding counter (in CME) has already been cached,
the OTP generation and the read access can be executed in parallel,
hiding the OTP generation latency. Typically, those counters of
di�erent data blocks in the same data page (i.e., 4 KB) are organized
into the same cache line [19, 24]. Therefore, almost all the work-
loads tend to have high cache hit ratio of metadata. The frequently
accessed and veri�ed tree nodes in Merkle Tree can be cached on-
chip too [3]. This allows the integrity veri�cation of a data block to
complete as soon as the needed tree node is found in the on-chip
cache. The reason being, since the cached tree nodes have already
been veri�ed and their security is guaranteed being on-chip.

2.3 Crash consistency cost in secure NVMs
While placing the frequently accessed secure metadata into on-chip
cache improves performance, it causes consistency problems for
NVMs. Once a system/power failure occurs, the cached metadata
may lose, while its associated data might have already reached
NVM. Such inconsistency between data and metadata can prevent
us from correctly decrypting and authenticating the NVM data. To
guarantee that we can always use the correct data at runtime and
retain secure protection after crashes, we need to ensure that:
(1) The data block, the associated counter and data HMAC should

reach memory atomically. Otherwise, the data cannot be de-
crypted or authenticated correctly.

(2) All layers of the Merkle Tree in NVM along with the root node
in TCB should be consistently updated.

Speci�cally, updating of MT is extremely expensive: Updates should
be applied from the leaf node till the root node (12 layers for a 16 GB
NVM with 128-bit HMAC). What’s more, the calculation of each
HMAC in the tree nodesmust be executed one after another (instead



of in parallel), since the parent node stores several counter HMACs,
and each of them is generated with one of its child nodes. Thus, the
write-back should wait until the root is updated.

These restrictions signi�cantly limit the e�ciency of secure
NVM. We have implemented a naive approach (called SC in Section
5) to guarantee consistency, which ensures atomicity by aggres-
sively �ushing all the related security-support metadata. Our evalu-
ation shows that it can increase memory writes by 5.5⇥ and deterio-
rate system performance by 41.4%, when compared to conventional
security architecture without crash consistency guarantees.

3 RELATEDWORK
Memory encryption. [17] proposes counter-atomic mechanism
by exploiting the application-level persistence semantics. It can
selectively relax the atomicity between the data blocks and coun-
ters. However, it requires extensive changes to existing applications
and can cause encryption pad reuse for non-persistent memory
locations [9]. Osiris [9] introduces extra ECC bits to correctly re-
cover the counters even when they are lost. Arsenal [12] ensures
the atomicity between the data block and the related metadata by
compressing the data block. Therefore, the data block, data HMAC
and counter can be placed into a single cacheline.

Memory authentication. [9, 12, 23] propose that the Merkle
Tree can be successfully reconstructed so long as the data block,
the corresponding counter in the NVM (i.e., leaf node) and the root
node in TCB are updated consistently. Therefore, the inner nodes of
the Merkle Tree don’t need to be �ushed out of the CPU cache for
each written-back data block. However, since the data block and the
root node need to be updated atomically, the write-back data will be
blocked until the root node is calculated. This approach ensures that
the replay attacks can always be detected if the constructed root
node mismatches with the root node stored in TCB (a non-volatile
register). However, it is unable to point out the exact data block that
has been corrupted: If a replay attack happens, it’s possible that
all the data HMACs match with their corresponding counters and
data blocks, but the reconstructed root node mismatches with the
TCB one. Actually, any spoo�ng and splicing attacks can prevent
the detection of replay attacks, because when these two types of
attacks happen, the reconstructed root from the remaining leaves
can’t match with the TCB root. As a result, all the data in NVM
should be dropped once an integrity attack occurs.

In conclusion, existing approaches either are vulnerable to in-
tegrity attacks [10, 17], or cannot pick out the tampered data after
a system failure [9, 12]. In addition, existing approaches [9, 12]
cannot avoid the aforementioned high calculating overhead when
updating the Merkle Tree.

4 DESIGN
4.1 Overview
Figure 2 shows the overall architecture of cc-NVM. To improve
performance, both the encryption counters and tree nodes of the
Merkle Tree (i.e., counter HMACs) are cached in Meta Cache. The
key insight behind the cc-NVM design lies in how to exploit the
bene�t of metadata caching, while providing �ne-grained data pro-
tection even after system crashes. For this purpose, cc-NVM incorpo-
rates three components working together in the memory controller,
which are Encryption Engine, Drainer andWrite Pending Queue.

Secure 
ProcessorEncryption

Engine

LLC MT Root

Drainer

Meta Cache

Encrypted Data

Write Pending 
Queue

 Untrusted
NVM

…1 2 3

Figure 2: Architecture of cc-NVM.
It �rstly uses an epoch-based mechanism to guarantee the con-

sistency of BMT when exploiting the bene�ts of metadata caching
(in Section 4.2). For normal write-back data blocks, the Encryp-
tion Engine updates the corresponding secure metadata directly
in Meta Cache. Meanwhile, the addresses of all dirty cachelines in
Meta Cache are recorded by the Drainer. Once a draining event
is triggered, the Drainer then atomically commits the updates in
the current epoch to theWrite Pending Queue and �nally to NVM.
Therefore, the Merkle Tree in NVM is guaranteed to be always
consistent, so its ability to specify the replay attacks still holds. Be-
sides, by aggressively caching the metadata inMeta Cache and lazily
evicting them out, write tra�c to NVM is dramatically reduced.

To reduce the overhead of calculating the counter HMACs for
each data write-back event, the Encryption Engine stops calculating
the counter HMACs for a tree node once its child has already been
cached inMeta Cache. Instead, the update is spread to the root node
only at draining phase (in Section 4.3). Thus the counter HMACs
computation overhead for each epoch is reduced.

After a system failure, however, a consistent but “old” Merkle
Tree in NVM may mismatch with the newest data blocks and data
HMACs. As a result, the subsequent process of data decryption
and integrity checking may fail. Luckily, we observe that the data
HMACs can be leveraged to recover those stalled counters to their
newest versions (in Section 4.4). Following this, we can further
rebuild the Merkle Tree with the newest counters and �nally de-
tect/locate all possible attacks.

4.2 Epoch-based Consistent BMT
To better utilize the Meta Cache while being immune to malicious
attacks, we propose epoch-based consistent BMT. It achieves this by
aggressively caching the frequently accessed secure metadata in
Meta Cache and atomically committing these updates to NVM. The
duration between two adjacent committing points is known to be
an epoch.

Aggressive Caching. For normal write-back events, as shown
in Figure 3, each time a data block is evicted from the last level cache
(in  ), it is encrypted and authenticated by the encryption engine
(in À). In this step, all the metadata updates (e.g., adding 1 to the
corresponding counter, modifying the related tree nodes in MT) are
conducted directly in Meta Cache. The root node in TCB is updated
too. In the meantime, the drainer tracks all the dirty cachelines in
Meta Cache by appending the related addresses of them into its
dirty address queue (in Ã). Note that we skip those dirty cachelines
if their addresses have already been put in the dirty address queue.
Actually, the process of À and Ã is executed in parallel, this is
because for a speci�c data block, the related metadata addresses
are deterministic in the existing secure NVM system.

While caching the metadata reduces write tra�c to NVM, we
still need to periodically commit the cached updates to NVM. There
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Figure 3: Epoch-based Consistent BMT.
are mainly two challenges: 1) How to guarantee the atomicity of
committing since the metadata in NVM needs to be consistently
updated; 2) How frequent should we commit (i.e., epoch length),
which balances the gains of caching and the risk of data loss.

Atomic Draining. To address the �rst issue, we adopt the hard-
ware Asynchronous DRAM Refresh (ADR) [20] mechanism. It en-
sures that any write request bu�ered in the write pending queue
(WPQ) of the memory controller will be successfully written back to
NVM with some backup power in case of a power failure. Thus, the
number of entries in WPQ limits the size of the persistent domains
in processors. In our implemented system, we use a 64-entry (i.e.,
4kB) WPQ. We then add two persistent registers in TCB. among
them, ROOTnew is updated for normal write-back events in step À,
while ROOTold is updated only at committing phase.

Based on this, we propose atomic draining protocol. To atomi-
cally commit the updates to NVM, the drainer �rstly sends a start
signal to the memory controller (step Õ), and �ushes the dirty
cachelines tracked in the dirty address queue to the memory con-
troller. Once the memory controller receives the signal, it starts to
block the metadata cachelines by putting them in the WPQ (normal
data blocks still �ow in legacy mode). When all the related metadata
cachelines have been sent to the memory controller, the drainer
sends an end signal to notify the controller to �ush all the cachelines
in WPQ to NVM (step Œ). Finally, the drainer update ROOTold with
the value of ROOTnew, so ROOTold is consistent with the Merkle
Tree in NVM (step œ). When a system failure occurs, the memory
controller continues to �ush the cachelines in WPQ to NVM with
the backup power provided by ADR subsystem. However, if the sys-
tem crashes before the memory controller receives the end signal,
it just drops all the residual cachelines in the queue, so as to keep
the Merkle Tree in NVM consistent. In addition, when the system
crashes after the memory controller receives the end signal while
before updating the ROOTold, we are sure that the newest consis-
tent state of the Merkle Tree will eventually reach NVM because of
the ADR support. So the Merkle Tree in NVM is consistent with
the ROOTnew and it still can detect/locate attacks. In conclusion,
we can ensure that the Merkle Tree in NVM is always consistent
with at least one of the root in TCB.

Epoch Length. To address the second issue, atomic draining is
triggered when any one of the following events is satis�ed:
(1) the dirty address queue is full or it doesn’t have enough entries to

store the corresponding metadata addresses of the next evicted
data block; In our implementation, the dirty address queue and
WPQ has the same number of entries.
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Figure 4: Undetectable Replay Attack with Old Root.

(2) a cacheline in meta cache is evicted by the cache system;
(3) a cacheline in meta cache has been updated for more than N

times since it becomes dirty (for fast recovery, in Section 4.4).
Besides, when a draining event is triggered, step   and À for the
subsequent evicted data blocks is blocked until the draining is �n-
ished. With such epoch-based consistency mechanism, applications
can fully exploit the bene�ts of metadata caching bymaximizing the
epoch length. Meanwhile, the Merkle Tree in NVM is guaranteed
to be consistently transited from an old state to a new one.

4.3 Deferred Spreading
Considering the locality property of most workloads, it’s very likely
that several adjacent data blocks evicted by CPU cache share the
same ancestors of tree nodes in MT. Therefore, updating the tree
nodes for each data block independently can cause great redun-
dancy of computing (in step À). To eliminate such redundancy, we
propose deferred spreading by calculating and updating the old tree
nodes of Merkle Tree only at draining phase.

Di�erent from that depicted in Section 4.2, in step À, we stop
updating the counter HMAC when it has already been cached in
Meta Cache. This is because the veri�ed and cached tree nodes are
always considered safe, which shares the same principles as that
in traditional DRAM-based secure system [3]. In step Ã, we still
need to reserve entries in the dirty address queue for the related
metadata counters and counter HMACs, despite the fact they have
not been dirtied yet. During the draining phase, all the tree nodes
(i.e., counter HMACs) indexed by the dirty address queue are �nally
calculated and updated by the encryption engine. ROOTnew in TCB
is updated accordingly. In this way, the same tree node only needs
to be calculated once for each draining.

Potential Replay attacks.However, introducing deferred spreading
can lead to undetectable replay attacks: As shown in Figure 4, a
system failure occurs before the last draining is committed. So the
Merkle Tree along with the root node is still in an old state, despite
that several data blocks have been newly written. If the newly
written data and the associated data HMAC are replayed to their old
version, such replay attack becomes undetectable because (1) the old
Merkle Tree in NVM is consistent with one of the roots in TCB (both
of them are lazily updated with the optimization in Section 4.3);
and (2) the old counter still matches with the replayed data block
and data HMAC. Actually, the key reason for such potential replay
attack is that the consistency between the data blocks and Merkle
Tree is relaxed. By lazily updating the ROOTnew, the newly written
data blocks is not always protected by an old Merkle Tree. To avoid
such undetectable replay attacks, we add an extra 64-bit persistent
register (a.k.a, Nwb) in TCB, so as to record the number of write-back
events since the last draining is committed. During recovery, we
then use this register to detect such replay attacks (in Section 4.4).

4.4 Crash Recovery and Attack Locating
When the system crashes before a draining is committed, theMerkle
Tree in NVM may mismatch with the data blocks and data HMACs.



So we need a way to recover it to its newest version. We observe
that the data HMACs can be leveraged for crash recovery: During
runtime, a counter is incremented by one each time a data block
is written-back, so we can always recover a stalled counter to its
newest version by calculating the data HMACwith this counter and
the corresponding data block, and comparing it with the existing
data HMAC in NVM. If they are equal, this counter is believed to be
the newest. Otherwise, we increase the counter by one and retry. To
correctly work with such recovery mechanism, the data block and
data HMAC should be �ushed to NVM atomically for each write-
back event. Luckily, this is not an issue since in existing Bonsai MT
architecture, data HMACs are not cached in meta cache [19], and
are generated directly in the memory controller. Therefore, such
atomicity can be easily achieved with the existence of ADR.

Crash Recovery. Since counters can be correctly recovered,
the Merkle Tree can be reconstructed too. Three types of integrity
attacks are detected and located during the recovery process. We
divide the recovery and attack detection process into four steps:
1) Locate normal replay attacks. With the epoch-based consistency

mechanism, the MT in NVM is ensured to be always consistent
with at least one of the roots in TCB in the absence of any attacks.
Therefore, a replay attack can be located if any two of parent
and child tree nodes mismatch.

2) Recover the stall counters and locate attacks. When recovering the
counters with the above method, if the generated data HMAC
fails to match after N times of retrying (N is a trigger event
described in Section 4.2), we can judge that either the data block
or the data HMAC has been attacked (i.e., spoo�ng/spicing).

3) Detect potential attacks.When recovering the counters, we record
the total number of retries (Nretry). If Nwb (in Section 4.3) and
Nretry are not equal, we assert that an attack occurs.

4) Rebuild the Merkle Tree based on the recovered counters if no
potential attacks happen.
By introducing an extra register of Nwb, we can now detect the

potential replay attacks, but still cannot locate the exact tampered
data block. However, the probability of this attack occurring is
extremely low (the dirty address queue can contain at most 42 dirty
counters, whose size occupies only 0.01% of a 16GB NVM). What’s
more, such replay attack is unable to be located only when the
system crashes, which further reduces the probability. We believe
that adding more persistent registers to record all the dirty counter
addresses in dirty address queue, and the update times of each dirty
counter cache can help us to locate the tempered data blocks, with
the cost of higher hardware requirements.

5 EVALUATION AND RESULTS
We model the hardware design in the cycle-accurate simulator
Gem5 [2]. The simulated system consists of x86-64 out-of-order
processors running at 3GHz. Each core has a private L1 I/D cache
of 32KB (latency=2 cycles), 2-way set associative and a shared
L2 cache of 256KB (latency=20 cycles), 8-way set associative. The
processor includes shared 128KB (latency=32 cycles), 8-way set
associative counter cache and Merkle Tree cache at L2 cache level.
All caches have 64B blocks and use LRU replacement. Without loss
of generality, we model PCM technologies with read/write latency
of 60ns/150ns [8] and 16GB capacity. The read/write queue in the
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Figure 5: System IPC (a) and NVM write tra�c (b) for di�er-
ent designs. Results are normalized to w/o CC.

memory controller is 32/64 entries. We assume the overall AES en-
cryption latency to be 72 ns [22] and the HMAC computation based
on SHA-1 to be 80-cycle latency [18, 19]. The HMAC is 128-bit
codewords, thus the Merkle Tree is 4-ary with 12 levels. The look-
up latency of dirty address queue is 32 cycles. We use benchmarks
from the SPEC2006 suite [16]. For each simulation, we simulate
for 500 million instructions after fast-forwarding to representative
regions. All experiments are single-thread and single-core. Here
are the di�erent designs we use in our evaluation:
w/o Crash-Consistency (w/o CC) is secure NVM without crash-
consistency. It only writes to memory dirty evictions from cache.
And this is our normalized base.
Strict Consistency (SC) enforces the data block and the corre-
sponding metadata (e.g., the counter and tree nodes in MT) to be
atomically written to NVM, with root consistently updated in TCB.
The atomic mechanism is based on the persistent registers [9].
Osiris Plus is an optimized version of the Osiris that eliminates
the need for evicting dirty counter blocks at the cost of extra online
checking to recover the most recent counter value [9].
cc-NVM w/o DS is our base solution without deferred spreading
(DS). It eliminates the need for atomic updates for every data block
while minimizing the performance and write tra�c overheads.
cc-NVM is an optimized version that only updates till the cached
Merkle Tree node instead of till the root.
The update times is limited to 16 for Osiris Plus, cc-NVM w/o
DS and cc-NVM. Besides, we use 64-entry dirty address queue for
cc-NVM w/o DS and cc-NVM.

5.1 System performance
Figure 5 (a) illustrates the impact of di�erent designs on system per-
formance in instructions per cycle (IPC) over di�erent benchmarks.
We have the following observations: (1) SC, Osiris Plus and cc-NVM
w/o DS shows very close but lower system performance compared
to cc-NVM. To guarantee the correct recovery, all of them need to
ensure the consistent updates between the write-back data and the
root node in Merkle Tree. Therefore, only when the root node is up-
dated can the data blocks be forwarded to the write pending queue.
Instead, for cc-NVM scheme, write-back data can be forwarded to
the write pending queue so long as an accessed metadata is cached



in TCB. (2) We also observe that Osiris-plus performs slightly better
than cc-NVM w/o DS, this is because Osiris Plus eliminates the
write tra�c for Merkle Tree node updates. (3) The performance of
cc-NVM is still lower than the baseline. Speci�cally, it reduces IPC
by 18.7% on average. Since in cc-NVM, all write-back data needs to
wait until all corresponding secure metadata addresses are put into
the dirty address queue.

5.2 NVM write tra�c
Figure 5 (b) shows the comparison of memory write tra�c incurred
by di�erent designs over baseline w/o CC. Strict consistency has
the most number of writes. Since a BMT is a multi-level tree of
hashes with counters as its leaf nodes, in strict consistency, all the
BMT nodes that lie on the branch of the modi�ed counter on every
write-back need to be written back. In our simulation, a 16 GB
NVM with a 12-level 4-ary BMT requires 12 atomic BMT updates
on every write-back (the BMT root is updated on the TCB, whereas
10 internal path nodes and the leaf-level counter are updated in the
NVM). This results in high memory write tra�c, which negatively
impacts NVM lifetime. Both cc-NVM and cc-NVM w/o DS shows
similar memory write tra�c. Speci�cally, their write tra�c is 39%
higher than the baseline. The extra write tra�c is introduced when
the updated tree nodes in Merkle Tree is �ushed to NVM. Osiris
Plus has less write tra�c than cc-NVM. This is because it doesn’t
have to persist the tree nodes of the Merkle Tree. However, we
notice that the performance of cc-NVM is higher than Osiris Plus,
despite the fact that cc-NVM incurs higher write tra�c. The reason
being, (1) all extra metadata write tra�c is incurred by data write-
back, which is out of the critical path of the CPU execution. (2) the
NVM bandwidth is not the bottleneck in our tests.

5.3 Sensitivity: Trigger Conditions
There are two parameters we can change to a�ect the epoch length.
One is the number of entries (M) in dirty address queue, the other is
the limit of update times (N) for the dirty cache blocks in metadata
cache. As shown in the Figure 6, the larger number of M and N may
result in longer epoch, thus improving the system performance and
reducing the number of writes to NVM. As we can see in Figure 6
(a), it has little e�ect on performance and write tra�c when the N
is larger than 32 (and the M is set 64 in these experiments). Because
the other two trigger conditions are dominant for state transition. In
Figure 6 (b), the N is set 16. The number of entries in write pending
queue limit the number of entries in dirty address queue. Thus it
must be less than 64. cc-NVM achieves less write tra�c and better
performance with larger M. While when the M is larger than 48,
the e�ect of M slows down. This is because the other two trigger
conditions play major roles.

6 CONCLUSIONS
cc-NVM is a low overhead crash-consistency mechanism for en-
crypted and authenticated NVM. cc-NVM employs epoch-based
consistent BMTwith deferred spreading to achieve high-performance
andwrite-e�ciency. After crashes, cc-NVM is capable to detect/locate
attacks in NVM and continue normal secure protection. In com-
parison to state-of-the-art secure NVM Osiris Plus [9] that guaran-
tees crash-consistency, cc-NVM improves IPC by 20.4% on average,
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Figure 6: (a). Impacts with varying update times limit (N). (b).
Impacts with varying number of entries (M) in dirty address
queue. Results are normalized to w/o CC.

while only incurring extra NVM write tra�c by 29.6% with the
ability to locate attacks after crashes.
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