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LrGAN: A Compact and Energy Efficient
PIM-based Architecture for GAN Training
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Abstract—As a powerful unsupervised learning method, Generative Adversarial Network (GAN) plays an essential role in many
domains. However, training a GAN imposes four more challenges: (1) intensive communication caused by complex train phases of
GAN, (2) much more ineffectual computations caused by peculiar convolutions, (3) more frequent off-chip memory accesses for
exchanging intermediate data between the generator and the discriminator and (4) high energy consumption of unnecessary
fine-grained MLC programming. In this paper, we propose LrGAN, a PIM-based GAN accelerator, to address the challenges of training
GAN. We first propose a zero-free data reshaping scheme for ReRAM-based PIM, which removes the zero-related computations. We
then propose a 3D-connected PIM, which can reconfigure connections inside PIM dynamically according to dataflows of propagation
and updating. After that, we propose an approximate weight update algorithm to avoid unnecessary fine-grain MLC programming.
Finally, we propose LrGAN based on these three techniques, providing different levels of accelerating GAN for programmers.
Experiments show that LrGAN achieves 47.2x, 21.42x, and 7.46 x speedup over FPGA-based GAN accelerator, GPU platform, and
ReRAM-based neural network accelerator respectively. Besides, LrGAN achieves 13.65x, 10.75x, and 1.34 x energy saving on
average over GPU platform, PRIME, and FPGA-based GAN accelerator, respectively.

Index Terms—Processing In Memory, Generative Adversarial Network, Approximate Computing, Non-Volatile Memory.
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1 INTRODUCTION

REMENDOUS success has been fueled by supervised

deep learning in image classification, speech recogni-
tion, and so on [32] [60] [34] [62] [52] [23] [26]. How-
ever, non-trivial amount of training datasets with millions
of lables prevents high-accuracy supervised deep learning
from being employed in many domains where massive
labels are either unavailable or costly to collect through
human effort.

By automatically generating richer synthetic datasets
without labeling data sets, semi-supervised learning [9] [28]
and unsupervised learning [25] [21] [18] are promising to
extend the intelligence of deep learning. On the frontier,
GAN is the most popular unsupervised learning method,
effectively working in many domains, such as video pre-
diction [21], autonomous driving [22] and photo resolution
upgrading [35].

Though GAN is powerful to generate items without
labeling training sets by human, its network structure is
more complex than traditional NN’s to efficiently execute
on hardware. The generator model and discriminator model
of GAN collaboratively work in a minimax manner, to
achieve stronger GAN with higher accuracy. To uphold the
interaction between the two models, massive amount of
intermediate data is required to be communicated between
the two models frequently. Since there are quite limited on-
chip memory space to store intermediate data, GAN train-
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ing will introduce additional pressure on off-chip memory
accesses, which consume nearly two orders of magnitude
more energy than a floating point operation [20]. Thus, these
huge data movements become a bottleneck of the system
design for GAN.

To solve the memory wall problem in GAN training,
researchers proposed ReRAM-based Processing In Mem-
ory (PIM) [40] [15] [58] [7] [61], which exhibits energy
efficiency in reducing memory access cost compared with
CPUs and GPUs. Besides, it can complete a Matrix-Multiply-
Vector (MMYV) operation in almost only one read cycle with
low energy consumption. Since MMV operations dominate
the computation patterns in GAN training, ReRAM-based
PIM technologies have the potential to reduce memory
access cost and accelerate GAN training efficiently.

However, GAN has two main features which are differ-
ent from traditional neural networks: (1) zero-insertion dur-
ing training phase; (2) intricate dataflow patterns between
the two models. These two features degrade the efficiency
of the PIM-based accelerator for GAN. First, zero-insertion
adds a heavy burden on storage. Also, I/O traffic becomes
the system bottleneck because (1) the interaction between
generator and discriminator requires more communication
via I/Os in PIM. (2) complex dataflow of GAN exists irreg-
ular data dependencies. Therefore, limited I/O bandwidth
stalls GAN training. Moreover, ReRAM-based PIM employs
MLC (Multi-Level Cell), which consumes a large amount
of energy during programming, hindering the low-power
ReRAM-based GAN training.

To address these challenges in PIM-based GAN archi-
tecture, we first propose a novel, software-managed Zero
Free Data Reshaping (ZFDR) scheme to remove all the
zero-related operations produced by GAN. Then, we pro-
pose a reconfigurable 3D connection architecture, which not
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only efficiently fits complex dataflows of GAN, but also
supports efficient ReRAM reads and writes and hides the
I/0 overhead to a great extent. What’s more, we propose
an approximate weight update algorithm to eliminate the
high energy-consuming portion of programming an MLC.
Finally, we propose LrGAN! (based on LerGAN [48]), a
ReRAM-based 3D connection GAN accelerator with low
energy consumption, which carefully maps the data pro-
cessed by ZFDR to the 3D-connected PIM. By doing so, it not
only achieves higher I/O performance but also enables I/O
connection configuration flexibly for the complex dataflows
in GAN training. Experiments show that LrGAN achieves
47.2x,21.42x, and 7.46 x speedup over FPGA-based GAN
accelerator, GPU platform, and ReRAM-based neural net-
work accelerator respectively. Moreover, LrtGAN achieves
13.65%, 10.75%, and 1.34x energy saving on average over
GPU platform, PRIME, and FPGA-based GAN accelerator,
respectively.

The main contributions of this paper are as follows:

(1) We elaborate three steps of zero-inserting that enable
transposed convolution operations in GAN and further
analyze the amount of zeros in GAN training. To address
problems caused by massive zeros in ReRAM-based PIM,
we propose Zero-Free Data Reshaping (ZFDR) to remove
zero-related operations. ZFDR is flexible to support different
paddings, strides and kernel sizes, capable of handling both
existing GANs and future GANs with larger stride (e.g.
stride of 3).

(2) We present the dataflows of training GAN in detail and
propose a novel reconfigurable 3D-connected PIM to handle
the complicated dataflows. Our 3D connection supports
efficient data transferring of both propagation and updating.
It is worth mentioning that, to the best of our knowledge, we
are the first to study efficient connections in ReRAM-based
PIM.

(8) We propose an approximate weight update algorithm
to avoid energy-inefficient operations in the fine-grain MLC
programming. The hardware which supports the approxi-
mate update scheme has a negligible modification on the
circuit of data-comparison-write.

(4) We propose LrGAN based on ZFDR, approximate weight
update and 3D-connected PIM. We make slight modifica-
tions on the software (via providing interfaces for ZFDR)
and memory controller (via creating a finite-state machine
for data mapping and configuration of switches) to enable
LrGAN to combine ZFDR and 3D-connected PIM well.
Also, we enable programmers to use heterogeneous levels
of acceleration according to demands.

The rest of this paper is organized as follows. We first
introduce ReRAM-based PIM and GAN in Section 2. Then
we analyze the challenges of using PIM to accelerate GAN
training in Section 3. We present our ZFDR, approximate
weight update algorithm and 3D-connected PIM in Sec-
tion 4. The design of LrGAN is in Section 5. Section 6
evaluates the proposed algorithms, 3D-connected PIM and
LrGAN system. Finally, we present related works and con-
clusions in Section 7 and Section 8 respectively.

”

“Lr” comes from removing “o0” from ”zero” which represents removing
0, changing “z” to ”1” to represent shortening wire connection, and

o

deleting “e” to represent energy-saving.

2 BACKGROUND

This section first introduces ReRAM-based PIM and how it
can be utilized to implement NNs efficiently, then presents
GAN and its features.

2.1 ReRAM-based PIM
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Fig. 1. Mapping MMV to ReRAM Crossbar.

ReRAM stands out from other non-volatile memories
(NVMs) since it has high density, relatively low write la-
tency [67], and low write energy [49]. Moreover, it has high
endurance (> 10'° [36] [37], up to 10'2 [37] [27], much
higher than that of PCM , which is 107 ~ 108 [56]). If a
network needs to be trained for 10° times [43], ReRAM-
based PIM can train 10° ~ 107 such networks. Due to these
benefits of ReRAM, recent studies [15] [58] [61] [14] modify
it as the hardware of PIM to accelerate the inference and
training of NNs.

ReRAM-based PIM consists of ReRAM arrays and pe-
ripheral circuits. Note that, ReRAM arrays can be configured
to either support MMVs (called CArrays in this paper),
or be used as traditional storage (called SArrays in this
paper). When ReRAM arrays are configured as CArrays,
they store weights of NNs and conduct MMVs by feeding
corresponding inputs (briefly shown in Fig.1). ReRAM-
based PIM also has buffer which is composed of ReRAM
cells and connected to CArrays directly. Such buffer is called
BArray and enables CArray to access it randomly, hiding
the memory access time when performing computation [15].
Equipped with CArrays, BArrays and peripheral circuits to
support various basic computations, ReRAM-based PIM can
be used to accelerate NN efficiently.

2.2 Generative Adversarial Network

The Generative Adversarial Network (GAN) consists of two
components: a discriminator and a generator. The discrim-
inator learns to decide whether a sample is from the real
data set or the generator. The generator aims to generate a
sample close to the real data to confuse the discriminator.
Therefore, in GAN, the two components play a minimax
game to compete with each other iteratively. A minibatch
stochastic gradient descent method can be used to train
this model, where in each training iteration, a minibatch
of m noise samples {n1,na,...,ny,} and m true examples
{x1,22, ..., s } are sampled from a prior noise distribution
pe(n) and real data distribution py(z), respectively. We
use G(n;6,) to denote the generative model that generates
samples from noises with parameters 6, and D(z) to denote
the discriminative model that represents the probability that



JOURNAL OF KATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3
G Layers  jlavert Layear 7 Layers D
Layerd Layer9
Layer3 256 256 Layer10
Layerl Layer2 512 Layerll
1024 gt L16 — s 1024 2YE"12
A —— ° /la
= N:’T:-:*—:QS W A =0
16
CONV1
CONV2 CONV7 CONVS8
- convs  CONVE
Generator G Discriminator D N
Fig. 2. DCGAN Outline
x comes from the real data distribution pg(z). In order TABLE 1

to optimize the discriminator, it needs to be updated by
ascending its stochastic gradient using Equation 1, which
means that the discriminator can assign correct labels to
both training examples from D and samples from G. In
order to maximize the generator, GAN uses Equation 2 to
update it by descending its gradient, which tries to confuse
the discriminator to predict the samples as data from the
real data distribution. In conclusion, GAN will converge
eventually so that the generator can generate an example
which is similar to a real one.

m

Vo, Y llog D) + log(1 = DG ()
Vo, L 3 log(1 - D(G(n) ®

We take the most popular Deep Convolutional Gener-
ative Adversarial Network (DCGAN) [71] as an example
to further introduce GAN. The framework of DCGAN is
shown in Fig.2. There are some differences between tra-
ditional Convolutional Neural Network (CNN) and DC-
GAN in training phase. In forward propagation phase of
discriminator, DCGAN employs strided convolution (S-
CONV) instead of pooling. As shown in Fig.2, the generator
has an inverse structure of discriminator, and it employs
transposed convolution (T-CONV) in forward propagation
phase.
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Fig. 3. Dataflows of Training Discriminator and Generator of DCGAN

Fig.3 shows dataflows of training DCGAN and Table 1
shows notations for explanation of training DCGAN. Over-
all, training DCGAN involves two major parts: one is for-
ward propagation and the other is backward propagation.
The backward propagation has two main sub-tasks: error
transferring and Vweight calculation. When training the
discriminator, the generator produces m fake samples using
m noises (m is the batch size and a noise (input) is denoted

Notations Used for Explanation of Training DCGAN.

[ Symbol [ Description |
W' Kernel weights for I-th layer
VW! Derivative of kernel weights for I-th layer
% Value of (WH)Tz + b
V2! Derivative of z for I-th layer
g Active function
a! Value of g(2%)

as a vector with 100 elements shown in Layerl of Fig.2).

This step is denoted by G, where DCGAN conducts T-
CONV. Then, one batch of real samples and one batch of
fake samples are fed into the discriminator. This step is

denoted by D, where DCGAN conducts S-CONV. Next,
DCGAN computes the error of output layer Vzl using
the loss function Equation 1, where L is the last layer of
the discriminator. After that, DCGAN feeds Vz back to
the network and begins the backward propagation, which

consists of two stages w- Firstly, Vz1 is fed back
layer by layer in D using Equation 3 (x denotes an element-
wise multiplication). Therefore, in D, the T-CONV takes
V2!*1 and 2! cached by D as inputs then outputs V2.

and

Vol = (WhHHTy L g/ (24 3)
Conducting ﬁw needs V2! transfered by g and the interme-
diate a'~! cached by

in D,,, denoted as W-CONV of discriminator since it is
different from both S-CONV and T-CONV.

. Equation 4 shows the computation

VW = ol -tz 4)

After E, the discriminator is updated with VW!. When
training the generator, the generator generates m samples
and feeds them into the discriminator. After conducting

, according to the Equation 2, the error of the output
layer in discriminator is sent to D. With the intermediate 2’
cached by B, can calculate errors an£ send them to error
}gopagation of generator (denoted as G). With V2! sent by

G and the intermediate a'~! cached by G, Ew can calculate
VW! of generator. After that, the generator is updated with
A4
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3 CHALLENGES

Although GAN has two networks, each of which resembles

CNN, it manifests some differences from traditional CNN.
In this section, we discuss challenges for PIM-based NN
accelerator to execute GAN.

3.1 Redundant Zero-Related Operations

Since DCGAN employs S-CONYV, its training introduces
considerable zero-insertion, increasing burden on both stor-
age and bandwidth. In order to explain how redundant
zeros are introduced and restrain the efficiency, we first
introduce some notations used in this paper in Table 2 and
take CONV1 of the generator in Fig. 2 as an example of T-
CONV. As shown in Fig. 2, I, = [; = 4and O,, = O; = 8.
The converse convolution of CONV1 is the same as CONVS8
in Discriminator, so S = 2, § = 1, P;) = Pl, = 2,
P, = P, = 2. Also, CONV1 and CONVS8 have the same
size of kernel weight. To conduct CONV1, we first insert
one zero between every two adjacent input numbers hor-
izontally and vertically (Step 1), then add one zero at the
end of input (Step 2) and finally use zero padding of 2 (Step
3). After that, we convolute it with 512 kernels, whose W,
= W, =5 and W), is 1024. Eventually, we obtain an output
whose size is 8 x 8 x 512. In this example, we store and
transfer 147456 input values while only 16384 of them are
useful. Moreover, we conduct 1638400 multiplications while
295936 of them are useful, whose efficiency is only 18.06%.

In general, I, = I;, O, = Oy, P, = P and P, = Pz/' So
we denote them as I, O, P and P,, respectively, and their
relationship is described in Equation 5.

2P —
O—Fkgi,W =(I—1)---R (R isthe remainder) (5)

4
TABLE 2
Notations Used for Explanation of Convolution Operations.
[ Symbol | Description
Ly, I, I, Width, length, height of input
O, Oy, Oy, Width, length, height of output
W, Wi, Wy, | Width, length, height of kernel weight
Nuw Number of kernel weights
S Stride size of convolution
s’ Stride size of converse convolution
Py, P, Padding on width, length
P:u, Pl, Padding on width, length of converse convolution
iz w Number of insert zeros on width
Ni. Number of insert zeros on length
Niero Number of zeros

Generally, to conduct a convolution in the generator, we
first insert S — 1 zeros between every two input numbers,
then we add R zeros at the end and finally we use zero
padding of P (where P = W — P — 1). Based on the
operations above, we can calculate N;, ,, and N¢ro.

Niz_w = NViz I = (Sl - 1) X (I - 1) + R 6)

Nzero = (Niz_w+lw +Pw) X (Niz_l+ll +Pl) _Iw X Il (7)

From Equation 6 and Equation 7 we can observe that with
the increase of S’ and P, the issue of redundant zeros in
T-CONYV becomes more severe.

Similar to T-CONV, W-CONV of a generator needs to
insert zeros into inputs. However, W-CONV of a discrimi-
nator needs to insert zeros to both inputs and kernels. We
take a W-CONV connecting Layer11 and Layer10 in Fig.2 as
an example. For simplicity, we take one input feature map to
illustrate the difference of zero-insertion between W-CONV
and T-CONYV in the example.

As shown in Fig.6, in the forward propagation, given
a 8 x 8 input, we first pad it with 2, then convolve it
with a 5 x 5 kernel, and finally obtain a 4 x 4 output. In
the backward propagation, we denote VOutput as dz in
Equation 3, whose shape is the same as the output. We first
insert zeros to VOutput and regard VOutput as a kernel
weight. Then, we convolute the given 8 x 8 input with the
kernel weight to obtain VWeight.

For W-CONYV of the discriminator, the relationship be-
tween input and output can be described as Equation 8.

[+2P-W _
-

Furthermore, the relationship between N;, ,, and N;, ; of
the kernel weight can be described as Equation 9.

(O—-1)---R (Risremainder) (8)

Niz_w = NViz I = (S - 1) X (O - 1) + R 9)

According to Fig.6, N,cr, in W-CONV of the discriminator
equals to the sum of the number of zeros used for input
padding and the number of zeros used for V insertion. It
can be described using Equation 10.

Nzero :[(Niz_w + Ow) X (Niz_l + Ol) - Ow X Ol]+

(Lo + Pu) x (I + B) — Ty x 1] (10)
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For W-CONV of the discriminator, V.., also increases
either S or P increases according to Equations 9 and 10.

3.2

For training where massive memory reads/writes are re-
quired to update kernel weights, PipeLayer [61] employs
efficient H-tree wire routing. However, the dataflows of
GAN training are more complicated than that of traditional
NNs. We take a simple GAN (3-layer generator and 3-layer
discriminator) as an example to show details of dataflows
(training discriminator in Fig.7 and training generator in
Fig.8). Thus, if we train a GAN by mapping phases to H-tree
connection architecture, it will experience a large number of
long routings.

Fig.9 shows two GAN examples Nj, Ny training on
the H-tree routing banks. Each bank has 16 tiles and each
tile is composed of several CArrays, BArrays and SArrays.
There are two kinds of routing nodes: (1) multiplexing node,
connecting data wires of the same width; (2) merging node,
through which the width of data wire is divided into two
halves. In the examples shown in Fig.9, N; is a relatively
small GAN, while N> may be a bigger GAN or a small GAN
with high parallelism (i.e. duplicating kernel weights for

Inefficient /0 Connection
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Verify Verify Set Verify

Set-sweep 4 Set f
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Time
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SET

Fig. 10. Programming Scheme of MLC.

several times). In other words, the space utilized by training
a GAN is decided by the size of GAN itself and the number
of kernel weight duplications. When we map a GAN, we
can separately training discriminator and generator as Ny
shows. This introduces more space while reduces total data
movements compared with the map without duplication
like the mapping pattern of N,. However, all of these
mapping patterns suffer from long routings, as examples
marked in green and red arrows shown in Fig.9. With
network size and number of duplications increasing, this
problem becomes more severe. We can relieve this problem
by adding some connections between the routing nodes
whose parent nodes are different, as the connection pattern
used in by MAERI [33]. Since the dataflow of GAN training
is much more complicated, simply doing so will not achieve
desirable performance of speedup.

3.3 High Energy-consuming Write Scheme of MLC

ReRAM-based PIM [14], [15], [58], [61] employs MLC in-
stead of SLC for the following three reasons. (1) Using SLC-
based NVM array to conduct a vector-matrix multiplication
requires more time for intermediate data processing. (2) The
SLC-based array not only has latency overhead for process-
ing intermediate data but also introduces larger peripheral
circuit to process intermediate data. (3) MLC-based NVM
has higher memory density than MLC-based NVM.

Although MLC has these three advantages over SLC, its
programming is more complex than that of SLC, which only
conducts a single SET or RESET operation. Figure 10 depicts
the procedure for programming an MLC, which is also
known as “Program-and-Verify” (P&V). First, a SET-sweep
pulse is applied to program the cell to its lowest resistance
state. This is followed by a RESET to initialize the cell to a
total RESET state. Next, P&V applies an SET pulse and then
verifies that a specified resistance has been achieved, itera-
tively. The protracted programming procedure mentioned
above accounts for MLC’s long write latency and high
energy consumption. Based on this programming scheme,
we can also figure out that altering values varies time and
energy consumption.

TABLE 3
Programming Latency and Energy of MLC ReRAM Cell.

[ Target [ 0 [ 1 [ 2 [ 3 [ 4 [ 5 [ 6 [ 7 ]
[Two(ns) [ 152 [ 468 | 983 | 143 [ 150 [ 101 | 527 | 121 |
[ Bave(pd) | 20 | 67 | 193 | 351 | 356 [ 196 | 85 | 15 |

Table 3 is retrieved from [53]. It records the worst case of
latency and the average energy consumption for program-
ming 3-bit MLC (eight resistance states). An MLC costs more
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time and energy to program a cell to middle resistance states
(e.g., state 3, 4 in 3-bit MLC) since it requires additional
tuning iterations. Moreover, time and energy consumption
spike with 4-bit MLC due to the finer-grained tuning proce-
dure. Unfortunately, training GAN requires cells with more
resistance levels, which improves performance and mem-
ory density. Since NVM-based PIM lacks flexibility when
compared with FPGA and GPU, it should ensure both high
performance and low energy consumption. Thus, MLC'’s
energy inefficient write scheme has become a challenge for
GAN training with ReRAM-based PIM.

4 OUR PROPOSED SOLUTIONS

In this section, we propose our solutions to address the
three challenges analyzed in Section 3.

4.1 PIM-Based Zero-Free Scheme

In order to address the problem mentioned in Section 3.1,
we propose a novel software managed, memory controller
supported scheme called ZFDR (Zero-Free Data Reshaping)
to remove zero operations. This scheme consists of two
components: (1) T-CONV ZFDR for T-CONVs; (2) W-
CONV-S ZFDR for W-CONV of stride convolution.

We first take CONV1 (Fig.5) as an example to explain
our T-CONV ZFDR scheme. We usually convert convolu-
tions into MMVs in PIM-based computation, so we first
reshape kernel weights into vectors. The reshape operation
is different from the general one since we only extract
kernel weights that multiply non-zero inputs, as shown
in Fig.11. After reshaping all the 512 weight kernels into
a 512 x 4096 matrix, we map this weight matrix into the
Carray and feed the corresponding 4096 inputs, then we
obtain 512 results. All of above operations correspond to
one convolution operation with 512 kernel weights. After
the first convolution operation shown in Fig.11, we slide
kernel weights with stride of 1. When sliding, the useful
kernel weights change. Fig.12 gives an example of how
useful kernel weights change when sliding. Thus, in Step
3, the weight matrix can be reused since it is the same with
that in Step 1. We find that some reshaped weight matrices
are reused when kernels slide on the edge of input map and
more reshaped weight matrices are reused when kernels
slide inside the input map.

In summary, we store 25 kinds of reshaped weight
matrix in this case (also the same in CONV2, CONV3 and
CONV4). Notwithstanding this ZFDR scheme introduces
more space to store weights, it improves parallelism greatly.
For example, it only needs 9 cycles (one MMV uses one
cycle) to complete CONV1. While without ZFDR, it will
take 64 cycles. Moreover, if we duplicate kernel weights
directly (without ZFDR), and we want to conduct CONV1 in
9 cycles, we need to store at least 179200 weights. It means
that in order to achieve the same performance as ZFDR,
duplicating weights directly not only consumes 75% more
storage, but also transfers 9x inputs.

In order to extend our ZFDR scheme to a general case,
we first define the Loop Length (LL) using the following
equation.

> . 512
S : 2
N e e — U

N A A
input
201 X ¥
Y
LTI

EERE

9601

Fig. 11. Example of Zero Free Data Reshaping.
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Fig. 12. Example of How Useful Weights Change When Sliding.

P>S -1
P<S —-1,P+R>S —1
P<S -1,P+R<S —1
(1D
Then we divide the T-CONV ZFDR scheme into three
cases as follows. Case 1: Reshape kernel weights that
conduct convolution on the corner of input map. This case
has (I —1) x 8" + 1+ R+ 2P — LL)? sets of reshaped
weights, and each kind of weights is non-reusable. Case 2:
Reshape kernel weights that conduct convolution on the
edge of input map. We define R;, Ry using Equations 12
and 13:

IxS +(S -1)
IxS
IxS — (8 -1)

LL =

P P<S§ -1
- , 12
B { P—(S -1 else (12)
[ (P+R)—(S-1) P+R>S5 -1
Itz = { P+ R else (13

Then number of reshaped kernel weights in this case is
Ry x S x 2+ Ry x S x 2, and each reshaped ker-

nel weight can be reused by ¢ times (¢t € { {LL;WHJ,

5
({%J + 1) }). Case 3: Reshape kernel weights that

conduct convolution inside the input map. This case has
S xS reshaped weights, and each reshaped weight can

2
be reused by ¢ times (¢ € { LLL_WHJ , ({LL_W‘HJ +1)2,

S S
{LL—SVV-H x ( LL—SlfV-Q—lJ +1) ).

The pattern of W-CONV-S ZFDR is similar to that of
T-CONV ZFDR. The difference is, for W-CONV of stride
convolution, we remove zeros from Voutput, reshape it
as weight, then conduct convolution on input map to re-
ceive Vweight. W-CONV-S ZFDR has three cases as fol-
lows. Case 1: Reshape zero-insertion Voutput that con-
ducts convolution at the corner of input map. This case
has (gf + (LSRf +2[L] [£52] number of reshaped
Voutputs and each of them is non-reusable. Case 2: Re-
shape zero-insertion Voutput that conducts convolution
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Fig. 13. 3D Connection Based on Original H-tree Connection.

on the edge of input map. This case has 2 [£] + 2 [252]
number of reshaped Voutputs, and each of them can be
reused by I—(O—1)S times. Case 3: Reshape zero-insertion
Voutput that conduct convolution inside the input map.
This case has only one zero-insertion Voutput whose size is
equal to Voutput, and it can be reused by [I — (O —1)S]?
times.

Since both T-CONV ZFDR and W-CONV-S ZFDR have
three similar types, we name them as CornerReshape,
EdgeReshape and InsideReshape respectively. Note that
CornerReshape has no reuse of reshaped weights
while InsideReshape tends to have more reuses than
FEdgeReshape does. This involves an unbalance in runtime
because InsideReshape takes a long time to execute while
Corner Reshape is idle in most of the time. Such unbalance
not only exists in the executing stage, but also in the I/O
transmission, because I/O connected to InsideReshape is
busy while that connected to CornerReshape is slack. In
order to address this problem, we duplicate FdgeReshape
and InsideReshape for R, times and R; times respectively.

4.2 3D-Connected PIM for GAN Training

In order to solve the problem elaborated in Sub-Section 3.2,
we propose a 3D-connected PIM, aiming to efficiently fit
dataflows of GAN training.

Fig.13 shows an original H-tree data wire connection
in a bank with 16 tiles (light grey squares). Green and
blue squares are multiplexing nodes, while red and yel-
low squares are merging nodes. To better illustrate our
3D connection architecture, we draw the connections as
a binary tree and mark different connection layers with
different colors. First, we add wires between two nodes
whose parent nodes are different in one layer, such as the
wire between the middle two blue nodes shown in Fig.13.
Then we pile up three banks and add vertical wires between
two corresponding nodes. For each two vertical connected
nodes, the width of wire between them is the same as the
width of wire connected to their parent nodes. Due to the
pin bandwidth limitation, we modify the routers by adding
switches. We take two nodes as examples shown in Fig.13
(original wires are colored grey and added wires are in
yellow). For the node circled in blue, it has one switch,
which can connect wire h, wire d or wire f, and two
wires connected to child nodes are fixed as original. For
the light gray node circled in green, it has two switches,
which can connect wire u, wire d or wire f. Note that,
only nodes in Bank 2 have two switches, which enable the
nodes to connect both upper/down nodes at the same time.
We create a state set s_set for each switch, and we have
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s_set C {parent, horizontal, upper,down}. Moreover, we
add an adder into the each node, which can be also by-
passed. Thus, we build a 3D data wire connection unit
(3DCU), which can be configured into two modes: Smode
for normal memory read/write and C'mode for computing.
In Smode, the connections are static and configured as H-
tree pattern. While in C'mode, the connections are dynami-
cally reconfigured according to dataflows.

With 3DCU, we can build our 3D-connected PIM for
training GANs. Fig.14 ellaborates how to use 3DCUs to
train a GAN. First, we connect two 3DCUs ({Bj, Bz, B3},
{Bu4, Bs, Bs}) together. Banks in these two 3DCUs are all
connected to the bus in traditional way. Moreover, B; and
B4, Bz and Bg can be connected to each other directly,
bypassing the bus and CPU.

After connecting two 3DCUs, we first present the way of
training discriminator in Fig.14. Note that we only present
the critical concept paths, omitting other paths like data
transferring of Vweight calculation inside the bank. When
training discriminator, By and Bs are not used and stay in
Smode, working as traditional memory. We first map G to
By and D to B,. After that, we configure {B1, By, Bs, Bg}
into Cmode. We show the dataflows of training discrimina-
tor with P, (P reperesents the point marked on dataflows
in Fig.14, x is the number of the point). P, — P, is the
dataflow of G, and the zigzag line represents that during G,
we may transfer data from one tile to another tile through
horizontal connections. P, — P; transfers outputs of gener-
ator to discriminator through the bypass bus connection.
P; — P4 shows the dataflow of D. During P3 — P4,
when we complete the computation of one layer, we map
the corresponding part of D,, and D to Bs and B¢ respec-
tively. Note that we continue forward propagation of the
discriminator when we map D,, and D. For example, we
conduct P;; — P2 and Py — Pg simultaneously. We start
the backward propagation by transferring error from P; to
Ps. During the backward propagation, we need the results
from both (Ps — P;, P11 — Pi3) and (Ps — P,
Pis — Py5) to conduct . Also, we need the result from
ﬁ (Py — Pyo) to conduct%. After backward propagation,
we configure { By, By, Bs } into Smode. Through reading Bs
and some calculations in CPU, we update discriminator by
writing new kernel weights to By.

The right part of Fig.14 illustrates the dataflows of
training generator. Note that, after training discriminator,
B; is in Cmode, while others are in Smode. Thus, we
first swit%\ others to C'mode. At the same time, we can
conduct G shown as P — P, and map G,,, G to By, B3
simultaneously. Then we output results of g to D marked
as P, — P3 and start B through P; — P,. Simultaneously,
we map D to Bg. After that, we start backward propagation
by transferring error from P, to Ps. The error is transferred
to generator through P — P — Py, and during this
period, the result in B is used for D, such as Py — P;.
After transferring error to GG, we start G and ﬁw in an
interleaving way. Similar as dataflows in backward propa-
gation of discriminator, we need P;; — Pj2 and Pip — P2
to conduct Fw first and then we need P;3 — Pi4 for G.
Afterwards, we use Py — P and Pi5 — Pjs to complete
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Fig. 15. Data mappings on 3D-connected PIM.

Fw. Finally, in the same way of updating discriminator, we
switch {B1, Ba, B3} to Smode and update generator.

In general, we map generator to one or several 3DCUs
and map discriminator to corresponding 3DCUs connected
to generator. The top layer is usually for forward propaga-
tion and the second, third layers are usually for Vweight
calculation, error transfer respectively. We locate Vweight
calculation in the second layer since it needs data transferred
from either phases, while error transfer only needs data
from forward propagation. What’s more, in order to reduce
data movement, we should make sure each part of phase
is vertical alignment. Take computation between Layerl
and Layer2 in Fig.8 as an example. The left figure shown
in Fig.15 is an original way of data mapping. The green
and red parts are bigger than the blue one, because we
apply ZFDR scheme on them, duplicating kernel weights
for several times. For the blue one, it applies the normal
kernel weight mapping pattern. This naive data mapping
introduces non-negligible data movements, like blue lines
marked in the left figure. We can solve this problem by
splitting kernel weights and enable each part to handle
corresponding vertical partial results (shown in the middle
figure of Fig.15). Thus, we only need small-step data move-
ments like C' — D. It’s worth mentioning that green parts,
red parts and blue parts are not vertical alignment perfectly.
They may have small-step data movements horizontally, but
it’'s much better than original data mapping shown in the
left figure. The method in Step 1 is space-saving but less
parallelism. Also, we can duplicate weights after splitting,
like Step 2 shows. This improves the parallelism but turns
out to be space consuming. The detailed design will be
introduced in Section 5.

4.3 Approximate Weight Update of GAN Training

In this sub-section, we propose an approximate weight
update algorithm to mitigate the problem of high overhead
caused by MLC programming (Section 3.3).

First, we are glad to observe that GANs can adapt
to approximate computing. When we modify the low-
significance bits of some weight values during GAN train-
ing, the quality of the samples generated by the trained

Training Generator

generator remains stable. For example, we first train DC-
GAN in the standard procedure with the dataset bedroom
in Lsun [69]. We use a 16-bit precision value to train the
discriminator and generator iteratively. We train them 25
times with 50,000 iterations in each training round. Then
we modify 20% weight values by changing their four low-
significant bits randomly during the DCGAN training pro-
cedure. The pictures of bedrooms generated by these two
trained generators are shown in Figure 17. The pictures
generated from the modified training (Figure 17(b)) and
pictures generated from the standard training (Figure 17(a))
look similar. To quantitatively compare these two trained
GANSs, we introduce FID in [46], a score to quantify the
quality of the pictures generated. Experiments show that the
difference between the FID of the original DCGAN and the
FID of the modified-trained DCGAN is only 0.3. This means
that the modified-trained DCGAN is virtually as good as
the original one.

With training modified, we propose Approximate Update,
an approximate weight update algorithm for GAN training.
The key idea of Approximate Update is to avoid the energy-
consuming SET operations in MLC writings without dimin-
ishing GANs’ accuracy. Algorithm 1 shows the pseudo-code
of the approximate weight update.

Algorithm 1: Approximate Weight Update

Input: permission of approximate weight update to
the bitline: permission, set of values to be
approximated: [tgown, tup|, current value:
c_value, value to write: w_value

1 if w_value == c_value then
2 | Skip the write operation;

3 else
4 if permission == FALSE or w_value &
[tdowna tup] then
5 L Conduct normal MLC-write operation;
6 else
7 Conduct SET-sweep and RESET operations;
while c_value & [taown, tup| do
8 L Conduct SET and VERIFY operations;

The Approximate Update works with the permission in-
dicating whether the bitline allows approximate comput-
ing. This is decided by the significance of the values. The
[tdowns tup] is set according to the pre-trained results to en-
sure the GAN’s accuracy. In Algorithm 1, lines 1-2 show the
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Fig. 16. Circuit of Approximate Update.

data-comparison-write module, which skips the write when
the writing value equals the value of the cell. Then, lines 4-5
describe the conditions in which Approximate Update cannot
be performed. Finally, lines 7-8 illustrate the procedure of
Approximate Update, in which [tgown, tup] includes values
that require more fine-grained SET operations. The Ap-
proximate Update eliminates this time- and energy-intensive
procedure by introducing crose-grained SET operations to
enable ¢_value in [tgouwn, tup| instead of forcing ¢_value =
w_value.

Figure 16 depicts the circuit supporting Approximate Up-
date, which is built on the data comparison write circuit. The
red part of Figure 16 is the only part that differs from the
data comparison write, because, in addition to determining
whether two values are equal, it also judges whether the
current value is in the given interval. Furthermore, the
Direct_write signal is controlled by line 4 in Algorithm 1.

5 LRGAN DESIGN

In this section, we present how the Zero-Free Scheme
in Section 4.1 and 3D Connected PIM in Section 4.2 work
together in LrGAN. Fig.18 elaborates the outline of LrGAN
design in five parts.

Program In the program stage, we program a network,
describing it layer by layer. For example, in the Ith layer, we
use the size of input (input_size_l), size of kernel weight
(weight_size_l) and size of output (output_size_l) to de-
scribe it. Moreover, stride includes the stride of generator
and stride of discriminator and so does padding. Structure
replica_degree describes the degree of duplication in each
phase of training GAN. It has three degrees, low, middle
and high. Programmers can easily use these three param-
eters which represent low to high parallelisms, without
knowing how to duplicate kernel weights to increase par-
allelism, which will be performed by the compiler.

Interface  We realize ZFDR by providing two inter-
faces. One is ZFDR_T for T-CONV ZFDR and the other
is ZFDR_W S for W-CONV-S ZFDR. These two functions
do not reshape data directly but create place holders and
dataflows for further removing zeros, just like the way of
traditional NN frameworks. Their parameters are passed
from programming a network. These two functions also
process the network layer by layer. The interface component
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in Fig.18 shows the most complex situation: the generator
of this GAN has both T-CONV and S-CONV, and the
discriminator has T-CONV. The generator needs ZFDR_T
for 8 (marked in blue), both ZFDR_T and Z£ DR WS
for a (marked in orange), and ZFDR_T for G (marked
in purple). The discriminator needs ZF DR _T for D and

w (marked in yellow and green). Under normal situation
where the generator has T-CONV and the discriminator
has $-CONV, ZFDR_T is needed for G, (7,, and
ZFDR_WS is for D,,.

Compiler After reshaping data, we start to map them
through a compiler. Mapping data has two parts. One is
mapping generator and the other is mapping discriminator.
In the case of the @egtor with both T-CONV and S-
CONV, we map 8, Guw, G, ﬁw and % by using Zero Free
Data Mapping scheme (ZFDM), while we use normal data
mapping scheme (DataMapping) to map D (shown in the
compiler component of Fig.18). In the case of the generator
with only T-CONV, we use DataMapping for G and D,
and ZFDM for the remaining phases. ZFDM has two main
parameters: data reshaped by ZFDR and the number of
replicas transferred from programming.

We take to further elaborate ZFDM scheme.
gf_reshaped is data reshaped by ZFDR during generator
forward propagation. replica_gf is a vector which records
the number of replicas in Corner Reshape, EdgeReshape
and InsideReshape. We name items in replica_gf as
replica_c, replica_e and replica_ti. Also, we calculate the
average reuse time of each case and name them as reuse_c,
reuse_e and reuse_i. We do this because the reusing time
of weights inside each case shows little difference. Assume
that the time MMV consumed in CArray is ¢,,, then the total
time of computation t. ;o4 in a layer is ¢, X Tf?f;;ii (the
execution time of parallel tasks is decided by the longest
task). We assume the time of transferring data from one tile
to its neighbor is ¢;, then transferring results of a layer to its

, and

next layer consumes at least ( [%1 —1) x t;, named

i total (layer_size is decided by replica_c, replica_e and
replica_i). We fix replica_c as 1 since reuse_c is 1, and
define the maximum value replica_enqz, replica_imas =
LL x replica_epmaz to let t total < te totar (LL is the loop
length defined in Section 4.1). Based on parameters defined
above, we can define replica_g f as Table 4 shows.

TABLE 4
Value of replica_gf.
Value ™\ Part
replica_c replica_e replica_i

Level

low 1 1 replica_emax
middle 1 replica_emax replica_emax
high 1 replica_emax replica_imaz

To summarize, we duplicate kernel weights considering
three factors: (1) Programmers’ demand (space demands).
When the free space is small or programmers would like
to use small memory space to train a GAN, they can
set replica_degree as low, and vise versa. (2) Improving
the performance. More replicas indicate higher parallelism,
which means higher performance. (3) Avoiding I/O to
become a bottleneck. More replicas may incur more com-
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(a) Pictures Generated under Normal Training.
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(b) Pictures Generated under Modified Training.

Fig. 17. Comparison of Pictures Generated by The Normal Training and The Training with Modifying 4 Low Significant Bits of 20% Weight Values.
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Fig. 18. Outline of LrGAN (an architecture combined techniques of ZF DR and 3DCUs).

munications among tiles, so we must avoid heavy commu-
nications from hindering performance. For other phases in
ZFDM, parameters can be obtained in the same way of
does.

Then we take B to further introduce DataM apping
scheme. df _reshaped is data reshaped by normal reshaping
scheme during forward propagation phase of discriminator.
For replica_df, we define it as Equation 14 shows, where

5.t is size of kernel weights after duplication in D and s,
is size of kernel weights before duplication in D.
1 replica_degree = low
replica_df = [;;—sfn replica_degree = middle
Szf

o replica_degree = high
(14)

Memory controller = Memory controller records the
information transferred from the compiler, such as number
of replicas and data mappings. What’s more, it records states
of switches, which are deduced by data mappings. These
records come into a finite state machine, marked in blue
rectangle in Memory Controller (Fig.18). The finite state
machine offers states for dataflow controller and switch
controller to control 3DCUs. Also, these two controllers
receive signals from 3DCUs and update the finite state

machine. Thus, the memory controller can manage the data
mapping and configure switches according to the dataflows
dynamically.

ReRAM-based PIM  The part communicating with
memory controller is ReRAM-based PIM. It is also the main
hardware that supports our LrGAN. It is configured with
several 3DCU pairs introduced in Fig.14 in Section 4.2. Each
tile in 3DCU contains SArray, C Array and BArray, using
the design in PRIME [15], which has been already intro-
duced in Section 2.1. The ReRAM crossbars in a C'Array
(marked in light pink in Fig.18) employ the design of that
in ISAAC [58], since they can support 16-bit precision data
while PRIME can not. Based on the tile equipped with basic
NN computation and storage ability, our proposed 3DCU
pairs can work well.

6 EVALUATION

In this section, we first introduce our experimental setup
and benchmarks used to evaluate the proposed designs. We
then present our evaluation results in terms of performance,
energy, and overhead.
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6.1 Experimental Setup

We compare LrGAN with (1) GANs running on GPU
platform; (2) FPGA-based GAN accelerator [50]; and (3)
GANSs running on modified ReRAM-based NN accelerator:
PRIME [15]. We use the NVIDIA Titan X as our GPU plat-
form and choose the Xilinx VCU118 board for implementing
FPGA-based GAN accelerator. The hardware configurations
we used for PRIME and LrGAN are listed in Table 5. The
configurations of ReRAM are from [16], [53], [68].

TABLE 5
Hardware Configurations.
Host P Intel Xeon CPU E5520,
ost Frocessor 2.27GHz, 4 cores

L1 I/D cache 32KB/32KB; 4-way; 2 cycles access

L2 cache 256KB; 8-way; 10 cycles access

TaO,/TiO2-based ReRAM

Overview | 14GB; 2GB per bank, 128MB per tile;

ReRAM-based

SET/RESET/ latency: 100/34 ns;
read latency: 16 ns

Main Memory

Bank | GET/RESET energy: 9/10 p]
read energy: 2 pJ
H-Tree 29.9ns latency, 386p] energy

1/0 Frequency 1.6GHz

For LrGAN configuration, we use 4-bit for each ReRAM
cell, and 16-bit for input, weight and output (i.e. same
as [61]). The size of ReRAM array is 128 x 128 cells. We
configure half of a tile for CArray (64MB), 1/64 of the tile for
BArray (2MB) and the remaining 62MB for SArray. We use
CACTI-6.5 [51], CACTO-IO [29] to model our interconnects
and off-chip connects respectively.

6.2 Benchmarks

We employ 8 state-of-the-art GAN networks as our bench-
marks, shown in Table 6. To describe the topologies of
GANSs, we use f, c and ¢t to denote fully-connected, convo-
lution and transposed convolution layers respectively. For
example, the 512cbk2s denotes a convolution layer with
512 input feature maps, using 5 x 5 x 512 kernels with
a stride of 2, while 2s in 512¢5k2s denotes a transposed
convolution layer with a stride of 1/2. The 100f denotes a
fully-connected layer with 100-unit input and f1 denotes a
fully-connected layer with 1-unit output. The ¢3 represents
that after T-CONYV, there are 3 output feature maps. For
simplicity, if several layers share the same size of kernel or
stride, we consolidate those common factors at the end, for
example 100 f-(1024¢-512¢-256t-128t)(5k2s)-t3, where lay-
ers 1024¢, 512t, 256t, and 128t share the common kernel
size of 5 and stride size of 2.

6.3 Results

We fully train the networks in Table 6 with the batch size of
64, and the results are shown as follows.

We first examine the effectiveness of our proposed
ZFDR and 3D connection mechanisms. We then compare
the performance and energy between LrGAN and alterna-
tive PIM design such as PRIME. Moreover, we compare Lr-
GAN with FPGA-based GAN accelerator and GAN running
on GPU platform. Note that we use 2D and 3D to represent
H-tree and 3D connection design, respectively, and inves-
tigate configurations with different degrees of duplication
(i.e. low, middle and high).
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Fig. 21. Performance Comparison between ZFDR and Normal Reshape
with 3D-Connection

Fig.19 shows the performance of ZF DR in different
GAN phases. We use NS to represent normalized space,
which means that PRIME uses the same CArray space as
our design. ZF DR achieves distinct speedup on DCGAN,
cGAN, 3D-GAN, GPGAN and DiscoGAN, which reflects
that there are large portions of zeros in these GANs. What's
more, ZF DR saves up to 52X SArray space for storing
inputs (in the case of DCGAN), and saves 3.86x SArray
space on average. Note that DiscoGAN-4pairs has 5 phases
using ZF' DR because its generator has both S-CONV and
T-CONV. Moreover, there is no speedup on discriminator of
MAGAN-MNIST, because its layers are fully-connected.

When we evaluate the entire process of training GANs
with H-tree connection, the speedup of ZF DR almost dis-
appears. This is resulted from the overhead of data transfers.
Fig.20 shows the performance of our 3D connection design
compared with H-tree connection. We observe that with our
3D connection design, the speedup of ZF DR is much more
visible. Moreover, with 3D connection, duplication (low
degree) achieves much higher performance speedup than
ZFDR with no duplication, while duplication achieves
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TABLE 6
Topologies of GAN benchmarks. (f:fully-connected c: convolution titransposed convolution k:kernel s:stride)

[ Name | Generator | Ttem Size | Discriminator |
DCGAN [71] TO0F-(1024t-512t-256t-128t)(5k25)-13 64 % 64 (3c-1280-256¢-512¢-1024¢) (5k25) -1
<GAN [55] T00f-(256t-128t-64t) (4k25)-13 64 % 64 (3c-64c-128¢-2560) (4K2s)-f1
3D-GAN [66] T00f-(512t-256t-128t)(4K2s)-13 64 % 64 X 64 | (1c-64c-128c-256¢-5120)(4K2s)-f1

100£-1024t4k1s-512t4k2s-256t4k2s-128t4k2s- 3c4k2s-128c3k1s-(128¢-256¢-512¢-
ArtGAN-CIFAR-10 [63] | 17gy3116.13 32 x 32 1024c)(4k2s)-f11
GPGAN [65] 100f-(512t-256t-128t-64t)(4k2s)-t3 64 X 64 (3¢-64c-128c-256¢-512¢)(4k2s)-f1
MAGAN-MNIST [64] 50f-128t7k1s-64t4k2s-t1 28 x 28 784f-2561-256f-784f-f11
DiscoGAN-4pairs [31] (3c-64c-128¢-256¢-512t-256t-128t-64t) (4k2s)-t3 64 x 64 (3c-64c-128c-256¢-512¢)(4k2s)-f1
. . (3c-64c-128¢-256¢-512¢) (4K2s)-100f-(512t-256t-
DiscoGAN-5pairs [31] 128t-64t)(4k2s)-t3 64 x 64 (3c-64c¢-128c-256¢-512¢)(4k2s)-f1
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Fig. 22. Performance Comparison between LerGAN and PRIME (with-
out Approximate Weight Update)
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Fig. 23. Energy Saving Comparison between LerGAN and PRIME (with-
out Approximate Weight Update)

little speedup with H-tree connection.

Fig.21 compares the performance between ZF DR and
normal reshaping (marked as NR) with 3D connection.
The results show that with 3D connection, ZF DR with
(without) duplication achieves 5.11x (2.77x) speedup on
average, while normal reshaping only yields 1.31x speedup,
indicating that both our 3D connection design and ZF DR
are critical to accelerate GAN execution.

Experiments above show that ZF'D R and 3D connection
can achieve high speedup when they work together. We
further show the performance of LerGAN which combines
these two techniques. It's worth to mention that we use Ler-
GAN and LrGAN to represent the PIM architecture without
and with the approximate update scheme, respectively. We
train the discriminator and generator of each GAN for ten
iterations and calculate the average time of each iteration.
We compare different duplication degrees of LerGAN with
PRIME, shown in Fig.22. First of all, with our design applied
without approximate updating, DCGAN has more speedup
than 3D-GAN and GPGAN because it has a larger kernel
size than others, which leads to a larger proportion of
multiplications with zeros. Besides, MAGAN-MNIST shows
nearly no speedup since its discriminator is fully-connected

Fig. 24. Performance Comparison between LerGAN and LrGAN
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Fig. 25. Energy Saving Comparison between LerGAN and LrGAN

and its generator is small with only one T-CONV.

Fig.23 shows the results of energy saving. Note that
LerGAN-low-NS achieves 28.47 x energy saving on average.
This energy saving owes much to our zero-free and 3D con-
nection design, since they reduce the amount of data as well
as the data movements requiring long wires. Besides, with
the increase of duplications, LerGAN exhibits less energy
saving, since more duplications leads to (1) more memory
writes when updating GANs; and (2) more complex and
energy-consuming switch configurations.

We then evaluate the performance and energy saving
of Approximate Update. We set permissions of (4 + 3)th
and (4z + 4)th columns as TRUE, and others are FALSE
(0 < z < 31). For (4z + 3)th columns, [tgown, tup) is [6, 9],
and [tdown tup) 18 [4, 11] in (4z + 4)th columns. It is worth to
mention that these configurations obtained through various
experiments are not optimal. We leave how to find the
optimal solution as our future work.

Fig.24 and Fig.25 depict the speedup and energy sav-
ing results of LrtGAN with Approximate Update compared
with PRIME and lerGAN without Approximate Update. In
both of them, AWU represents approximate weight update
algorithm. From Fig.24 we can figure out that Approximate
Update are unable to achieve speedup because the latency
of each write operation is decided by the longest latency
of programming cells in a row. Since the (4x + 1)th and
(4 + 2)th columns employ normal programming model,
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Fig. 26. Performance Comparison among FPGA-based GAN accelera-
tor, GPU platform and LrGAN
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Fig. 27. Energy Saving Comparison among FPGA-based GAN acceler-
ator, GPU platform, LerGAN and LrGAN

they keep the longest latency unchanged. However, Approx-
imate Update can achieve 1.4Xx energy saving on average as
shown in Fig.25, which finally achieves 40x energy saving
on low-duplication mode when compared with PRIME. This
mainly benefits from avoiding high energy-consuming fine-
grain programming scheme.

We also compare LrGAN with the FPGA-based GAN
accelerator and GPU platform. Fig.26 and 27 show the
performance and energy consumption of aforementioned
architectures, respectively. In terms of the performance,
since our approximate update scheme has no speedup on
LerGAN, we show the results of LrtGAN (the speedup of
LerGAN is the same with that of LrGAN). LrGAN achieves
47.2x and 21.42x speedup on average over FPGA-GAN
and GPU, respectively. What’s more, DiscoGAN manifests
more speedup over others because (1) it has more T-CONVs,
which means more zeros. Our LrGAN with ZF DR design
shows higher performance; (2) the size of DiscoGAN is big-
ger, leading to more off-chip memory accesses for FPGA and
GPU, which causes PIM-based LrGAN to perform better.
Moreover, GANs with small sizes, such as MAGAN-MNIST,
and lacking T-CONVs, cause less speedup. For the energy
saving, LerGAN-low and LrGAN-low save more energy
than FPGA-based GAN accelerator for GANs with small
size but with more frequent T-CONVs (the left five GANs
in Fig.26). However, for GANs with small size and fewer
T-CONVs (MAGAN-MNIST), LerGAN shows slightly less
energy saving than what FPGA-GAN accelerator performs.
This is because LerGAN consumes more energy when up-
dating networks. Consequently, the extra energy cost can
not be amortized by the energy-saving opportunity. Thanks
to our approximate weight update algorithm, LrGAN has
1.34x energy saving than the FPGA-GAN accelerator on
average. Moreover, as shown in Fig.26 and 27, though more
duplication (e.g., LrGAN-high) brings more speedup, it
results in more energy consumption.

13
14.25% 25.05% @ cell switch
11.98% @ Computing @ Aoc
B Communication DAC
! o
Updating 56.54% 5.26% @ other

73.77% 13.15%

Fig. 28. The Breakdown of Energy Fig. 29. The Breakdown of Energy
Consumption in LrGAN (Overall)  Consumption of a ReRAM Tile

6.4 Accuracy Loss

We employ FID (Fréchet Inception Distance) in [46] to
quantify the quality of the pictures generated. FID is a score
that reflects the distance between a real and a fake item in
the feature level (the next-to-last layer). Therefore, a lower
FID means both higher quality and higher diversity of the
generated item. We can calculate FID by Equation 15.

FID = ||y — gl + T(S, + 3, - 2(5,5,)%)  (15)

In Equation 15, r and g represent real items and generated
items; p is the mean of the feature; 7, is the sum of all the
diagonal elements; ) is the covariance matrix of features.
In experiments, it’s difficult for a human to decipher a
generated item from a real one when the difference between
the two FIDs is less than 5.

We set the same noise to train each GAN when com-
paring the standard training and the approximate training.
The accuracy loss calculated by FID,,, — FI1D, is shown
in Table 7, which shows the accuracy of our proposed
algorithm is guaranteed.

TABLE 7
Accuracy Loss of Approximate Weight Update.

[ Name | FID, [ FIDup, | Difference |
DCGAN 35.6 36.5 0.9
cGAN 64.0 64.7 0.7
3D-GAN 30.3 31.6 13
ArtGAN-CIFAR-10 | 325 33.0 0.5

GPGAN 40.7 415 0.8
MAGAN-MNIST 32 4.7 1.5
DiscoGAN-4pairs 29.4 29.9 0.5
DiscoGAN-5pairs 29.4 29.9 0.5

6.5 Energy Distribution

Fig.28 shows the overall energy distribution of LrGAN
executed across the experimented benchmarks. The energy
of computing dominates 73.77% of the total energy in Lr-
GAN since it has a large amount of ReRAM-tile-related
operations, while that of communication occupies 14.25%,
benefited from our 3D-connected PIM design. Moreover,
we break down the energy distribution of a ReRAM tile,
as shown in Fig.29. The results show that cell switching
(25.05%) and ADC (56.54%) are the two main energy-
consuming contributors. Several studies [70] [38] on ma-
terials contribute on reducing energy consumption of cell
switching and ADC. If LrGAN is equipped with 1-pJ
cell switching [70], and a more energy-saving ADC (e.g.
60% [38]), it can achieve nearly 3x power reduction.

6.6 Overhead

The overhead of LtGAN has two parts: software overhead
and hardware overhead. For the software overhead caused
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by ZFDR and ZF DM, LrGAN spends 32.52% more time
than traditional methods on compiling. However, compared
with the total time spent on training a GAN(e.g. several
days), the overhead of few minutes incurred by the software
overhead can be ignored. For the hardware, we add some
switches, wires and modified circuit of Approximate Update.
All of these cause 13.5% space overhead compared with
PRIME. However, this space overhead can be justified by the
higher performance (2.1x speedup) delivered by LrGAN,
compared with PRIME using the same space. What’s more,
Approximate Update has only 0.9% time and 0.2% energy
overheads.

7 RELATED WORK

3D Network on Chip (NoC) There are several prior stud-

iess on 3D NoC [39] [30] [54] [8] [1], which are proposed
for shortening connections. However, their complex routing
algorithms are not suitable for GAN, while our succinct 3D
connection design fits GAN well.

NN accelerators Many recent works accelerate NN
based on FPGAs [72] [47] [74] [59] [3] and ASICs [19] [24]
[73] [41] [12] [44] [57] [45] [2]. Diannao family was proposed
based on Near-Data Processing (NDP) [11] [13] [17] [42],
which locates processors near the memory to reduce the
overhead of off-chip memory access. Our design is based
on ReRAM-based PIM, further reducing data movements.

ReRAM-based NN accelerators PRIME [15] is an ac-
celerator on basic computations of inference like MMV
computation. ISAAC [58] proposed a pipeline solution to
accelerate inference of CNNs. PipeLayer [61] further pro-
posed a pipeline solution with intra-layer parallelism on
both inference and training of CNNs. TIME [14] proposed a
ReRAM-based training-in-memory architecture and further
reduced the frequency of ReRAM read/write. Our work
proposes a zero-free, 3D connected GAN accelerator.

GAN accelerators Song et.al. [50] proposed FPGA-based
GAN accelerator. It uses well-designed dataflows to remove
zero operations and increase data reuse on FPGA. Amir
et.al. proposed a SIMD-MIMD acceleration for GAN [5]
[4] [6], by removing zeros in GAN training. Chen et.al.
proposed ReGAN, a ReRAM-based GAN accelerator using
pipeline [10] design. Our LrGAN design is PIM-based and
flexible to handle all zero-related scenarios in GAN training.

8 CONCLUSIONS

In this paper, we propose a high-performance, energy-
efficient PIM-based GAN accelerator: LrGAN. We design an
NVM-based PIM which outperforms the FPGA-based GAN
accelerator and GPU in both performance and energy con-
sumption when training GANSs. This offsets the flexibility of
PIM, which is worse than FPGA and GPU. LrGAN has three
main techniques: (1) the Zero-Free Data Reshaping (ZF D R)
scheme designed for ReRAM-based PIM to remove com-
putations with zeros; (2) the reconfigurable 3D connection
in PIM which eliminates the bottleneck of long data move-
ment; and (3) the approximate weight update scheme which
prevents unnecessary energy-inefficient fine-grained MLC
programming. LrtGAN also combines these techniques with
minor modifications of software and memory controller.

14

Experiments show that LrGAN achieves 47.2x, 21.42x, and
7.46 x speedup over the FPGA-based GAN accelerator, GPU
platform, and PRIME respectively. Moreover, LrGAN deliv-
ers 13.65x, 10.75x, and 1.34x energy savings over the GPU
platform, PRIME, and the FPGA-based GAN accelerator,
respectively.
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